Advertisement

Water, Air, & Soil Pollution

, 229:394 | Cite as

Influence of Sulfonation of Inert Macroporous and Macronet Resins on the SO2 Adsorption Capacity

  • Oanamari Daniela Orbuleţ
  • Cristina ModroganEmail author
  • Cristina Orbeci
  • Madelene Annette Dancilă
  • Constantin Bobiricǎ
  • Liliana Bobiricǎ
  • Eugeniu Vasile
Article
  • 96 Downloads

Abstract

The influence of sulfonation of both macroporous and hyper-cross-linked polystyrenic polymers on their adsorption capacity for SO2 removal from residual gases was studied through equilibrium experiments and microstructural analysis. The results showed that the insertion of functional sulfonic active groups leads to a decrease of adsorption capacity of macroporous and macronet resins mainly due to decreasing of specific surface area of the resins. The results were compared with those obtained for powdered activated carbon, which has an adsorption capacity higher compared with that of macroporous resins and lower than those of macronet resins. The high adsorption capacity of macronet resins has been attributed to the advanced cross-linking of the polystyrene chains that leads to the formation of a three-dimensional network with a high specific surface area. The fitting of the experimental data on the typical adsorption isotherms (Langmuir and Freundlich) highlighted the surface heterogeneity of macroporous and macronet resins.

Keywords

Macroporous resins Macronet resins Sulfur dioxide Adsorption Sulfonation 

Notes

References

  1. Atanes, E., Nieto-Márquez, A., Cambra, A., Ruiz-Pérez, M. C., & Fernández-Martínez, F. (2012). Adsorption of SO2 onto waste cork powder-derived activated carbons. Chemical Engineering Journal, 211–212, 60–67.CrossRefGoogle Scholar
  2. Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 1–11.CrossRefGoogle Scholar
  3. Cui, S., Hao, R., & Fu, D. (2018). An integrated system of dielectric barrier discharge combined with wet electrostatic precipitator for simultaneous removal of NO and SO2: Key factors assessments, products analysis and mechanism. Fuel, 221, 12–20.CrossRefGoogle Scholar
  4. Hamzehlouyan, T., Sampara, C. S., Li, J., Kumar, A., & Epling, W. S. (2016). Kinetic study of adsorption and desorption of SO2 over γ-Al2O3 and Pt/γ-Al2O3. Applied Catalysis B: Environmental, 181, 587–598.CrossRefGoogle Scholar
  5. Kang, Y. S., Kim, S. S., & Hong, S. C. (2015). Combined process for removal of SO2, NOx, and particulates to be applied to a 1.6-MWe pulverized coal boiler. Journal of Industrial and Engineering Chemistry, 30, 197–203.CrossRefGoogle Scholar
  6. Kim, S., & Lee, J. Y. (2017). Doping and vacancy effects of graphyne on SO2 adsorption. Journal of Colloid and Interface Science, 493, 123–129.CrossRefGoogle Scholar
  7. Lin, C.-H., Lai, C.-H., Wu, Y.-L., & Chen, M.-J. (2010). Simple model for estimating dry deposition velocity of ozone and its destruction in a polluted nocturnal boundary layer. Atmospheric Environment, 44, 4364–4371.CrossRefGoogle Scholar
  8. Oancea, A. M. S., Drinkal, C., & Höll, W. H. (2008). Evaluation of exchange equilibria on strongly acidic ion exchangers with gel-type, macroporous and macronet structure. Reactive and Functional Polymers, 68, 492–506.CrossRefGoogle Scholar
  9. Pedrolo, D. R. S., de Menezes Quines, L. K., de Souza, G., & Marcilio, N. R. (2017). Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption. Journal of Environmental Chemical Engineering, 5(5), 4788–4794.CrossRefGoogle Scholar
  10. Puxty, G., Wei, S. C.-C., Feron, P., Meuleman, E., Beyad, Y., Burns, B., & Maeder, M. (2014). A novel process concept for the capture of CO2 and SO2 using a single solvent and column. Energy Procedia, 63, 703–714.CrossRefGoogle Scholar
  11. Razaei, F., Rownaghi, A. A., Monjezi, S., Lively, R. P., & Jones, C. W. (2015). SOx/NOx removal from flue gas streams by solid adsorbents: A review of current challenges and future directions. Energy Fuel, 29, 5467–5486.CrossRefGoogle Scholar
  12. Rosas, J. M., Ruiz-Rosas, R., Rodríguez-Mirasol, J., & Cordero, T. (2017). Kinetic study of SO2 removal over lignin-based activated carbon. Chemical Engineering Journal, 307, 707–721.CrossRefGoogle Scholar
  13. Shao, J., Zhang, J., Zhang, X., Feng, Y., Zhang, H., Zhang, S., & Chen, H. (2018). Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation. Fuel, 224, 138–146.CrossRefGoogle Scholar
  14. Shen, J., Wang, X., Zhang, L., Yang, Z., Yang, W., Tian, Z., Chen, J., & Tao, T. (2018). Size-selective adsorption of methyl orange using a novel nano-composite by encapsulating HKUST-1 in hyper-crosslinked polystyrene networks. Journal of Cleaner Production, 184, 949–958.CrossRefGoogle Scholar
  15. Spiker, E. C., Hosker Jr., R. P., Weintraub, V. C., & Sherwood, S. I. (1995). Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables. Water, Air, and Soil Pollution, 85(4), 2679–2685.CrossRefGoogle Scholar
  16. Sudalma, S., Purwanto, P., & Santoso, L. W. (2015). The effect of SO2 and NO2 from transportation and stationary emissions sources to SO4 2− and NO3 in rain water in Semarang. Procedia Environmental Sciences, 23, 247–252.CrossRefGoogle Scholar
  17. Sun, Y., Yang, G., & Zhang, L. (2018). Hybrid adsorbent prepared from renewable lignin and waste egg shell for SO2 removal: Characterization and process optimization. Ecological Engineering, 115, 138–148.CrossRefGoogle Scholar
  18. Tailor, R., Ahmadalinezhad, A., & Sayari, A. (2014). Selective removal of SO2 over tertiary amine-containing materials. Chemical Engineering Journal, 240, 462–468.CrossRefGoogle Scholar
  19. Wang, J., Xu, L., Meng, Y., Cheng, C., & Li, A. (2011). Adsorption of Cu2+ on new hyper-crosslinked polystyrene adsorbent: Batch and column studies. Chemical Engineering Journal, 178, 108–114.CrossRefGoogle Scholar
  20. Xiao, G., & Long, L. (2012). Efficient removal of aniline by a water-compatible microporous and mesoporous hyper-cross-linked resin and XAD-4 resin: A comparative study. Applied Surface Science, 258, 6465–6471.CrossRefGoogle Scholar
  21. Xiao, G., Wen, R., You, P., & Wu, D. (2017). Adsorption of phenol onto four hyper-cross-linked polymeric adsorbents: Effect of hydrogen bonding receptor in micropores on adsorption capacity. Microporous and Mesoporous Materials, 239, 40–44.CrossRefGoogle Scholar
  22. Yi, H., Zuo, Y., Liu, H., Tang, X., Zhao, S., Wang, Z., Gao, F., & Zhang, B. (2014). Simultaneous removal of SO2, NO, and CO2 on metal-modified coconut shell activated carbon. Water, Air, & Soil Pollution, 225(1965).  https://doi.org/10.1007/s11270-014-1965-2.
  23. Yildiz, I. (2018). Fossil fuels. In I. Dincer (Ed.), Comprehensive energy systems (pp. 521–567). Cambridge: Elsevier Inc..CrossRefGoogle Scholar
  24. Zagarodni, A. A. (2006). Ion exchange materials: Properties and applications. Oxford: Elsevier.Google Scholar
  25. Zhang, Q., Tao, Q., He, H., Liu, H., & Komarneni, S. (2017). An efficient SO2-adsorbent from calcination of natural magnesite. Ceramics International, 43, 12557–12562.CrossRefGoogle Scholar
  26. Zhao, L., Bi, S., Pei, J., Li, X., Yu, R., Zhao, J., & Martyniuk, C. J. (2016). Adsorption performance of SO2 over ZnAl2O4 nanospheres. Journal of Industrial and Engineering Chemistry, 41, 151–157.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Oanamari Daniela Orbuleţ
    • 1
  • Cristina Modrogan
    • 1
    Email author
  • Cristina Orbeci
    • 1
  • Madelene Annette Dancilă
    • 1
  • Constantin Bobiricǎ
    • 1
  • Liliana Bobiricǎ
    • 1
  • Eugeniu Vasile
    • 2
  1. 1.Department of Analitycal Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials ScienceUniversity Politehnica of BucharestBucharestRomania
  2. 2.Institute of Research and Development “METAV” S.A.BucharestRomania

Personalised recommendations