Advertisement

Water, Air, & Soil Pollution

, 229:386 | Cite as

Preparation of Highly Efficient CoFe2O4/Zn2SnO4 Composite Photocatalyst for the Degradation of Rhodamine B Dye from Aqueous Solution

  • Jivago Schumacher de Oliveira
  • Michel Brondani
  • Evandro Sttoffels Mallmann
  • Sérgio Luiz Jahn
  • Edson Luiz Foletto
  • Siara SilvestriEmail author
Article
  • 149 Downloads

Abstract

CoFe2O4/Zn2SnO4 composite was synthesized using a simple two-step process and applied as a novel-efficient photocatalyst for the rhodamine B degradation from aqueous solution. Characterization techniques such as X-ray diffraction (XRD), N2 adsorption-desorption isotherms, scanning electron microscopy (SEM), EDS analysis, and diffuse reflectance spectroscopy were employed in order to investigate the physical and chemical properties of composite. Higher values of the specific surface area, pore volume and diameter, and a smaller band-gap energy promoted a greater catalytic activity of CoFe2O4/Zn2SnO4 composite when compared to Zn2SnO4. A rapid decolorization of dye solution was observed at 40 min of reaction using the CoFe2O4/Zn2SnO4 catalyst, being 2.5 times faster than the Zn2SnO4 alone. Therefore, the CoFe2O4/Zn2SnO4 composite shows extraordinarily high photocatalytic activity toward the degradation of rhodamine B dye from aqueous solution.

Keywords

CoFe2O4/Zn2SnO4 Synthesis Coupled oxides Photocatalysis Rhodamine B 

Notes

Acknowledgements

The authors are financially supported by the CAPES (PNPD - No. 20132633-42002010038P6 and FAPERGS No. 88887.195036/2018-00) (Brazilian Federal Agency for Support and Evaluation of Graduate Education).

References

  1. Alpuche-Aviles, A., & Wu, Y. (2009). Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method. Journal of the American Chemical Society, 131, 3216–3224.CrossRefGoogle Scholar
  2. Alshehri, M., Al-Marzouki, F., Alshehrie, A., & Hafez, M. (2018). Synthesis, characterization and band alignment characteristics of NiO/SnO2 bulk heterojunction nanoarchitecture for promising photocatalysis applications. Journal of Alloys and Compounds, 757, 161–168.CrossRefGoogle Scholar
  3. Choi, S.-H., Hwang, D., Kim, D.-Y., Kervella, Y., Maldivi, P., Jang, S.-Y., Demadrille, R., & Kim, I.-D. (2013). Amorphous zinc stannate (Zn2SnO4) nanofibers networks as photoelectrodes for organic dye-sensitized solar cells. Advance Functional Materials, 23, 3146–3155.CrossRefGoogle Scholar
  4. Das, P., Roy, A., Tathavadekar, M. P., & Devi, S. (2017). Photovoltaic and photocatalytic performance of electrospun Zn2SnO4 hollow fibers. Applied Catalysis B: Environmental, 203, 692–703.CrossRefGoogle Scholar
  5. Evingür, G. A., & Pekcan, Ö. (2018). Optical energy band gap of PAAm-GO composites. Composite Structurew, 183, 212–215.CrossRefGoogle Scholar
  6. Foletto, E. L., Battiston, S., Collazzo, G. C., Bassaco, M. M., & Mazutti, M. A. (2012). Degradation of leather dye using CeO2-SnO2 nanocomposite as photocatalyst under sunlight. Water, Air, and Soil Pollution, 223, 5773–5779.CrossRefGoogle Scholar
  7. Foletto, E. L., Simões, J., Mazutti, M., Jahn, S., Muller, E., Pereira, L., & Flores, E. (2013). Application of Zn2SnO4 photocatalyst prepared by microwave-assisted hydrothermal route in the degradation of organic pollutant under sunlight. Ceramics International, 39, 4569–4574.CrossRefGoogle Scholar
  8. Ghobadifard M, Mohebbi S (2018) Novel nanomagnetic Ag/β-Ag2WO4/CoFe2O4 as a highly efficient photocatalyst under visible light irradiation. New Journal of Chemistry, 42, 9530–9542.  https://doi.org/10.1039/C8NJ00834E
  9. Habibi, M. H., & Mardani, M. (2017). Synthesis and characterization of bi-component ZnSnO3/Zn2SnO4 (perovskite/spinel) nano-composites for photocatalytic degradation of Intracron blue: Structural, opto-electronic and morphology study. Journal of Molecular Liquids, 238, 397–401.CrossRefGoogle Scholar
  10. Han, H., Qian, X., Yuan, Y., Zhou, M., & Chen, Y.-L. (2016). Photocatalytic degradation of dyes in water using TiO2/hydroxyapatite composites. Water, Air, and Soil Pollution, 227, 461.CrossRefGoogle Scholar
  11. Hedayat, H., Reddy, P. S. P., Manasa, M. V., Devi, G. S., Rao, J. V. R., & Rao, G. N. (2017). Nanostructure evolution of zinc stannate: A suitable material for liquefied petroleum gas detection. Journal of Alloys and Compounds, 704, 413–419.CrossRefGoogle Scholar
  12. Hua, X., Hao, H., Guo, W., Jin, S., Li, H., Hou, H., Zhang, G., Yan, S., Gao, W., & Liu, G. (2017). Hydrothermal synthesis, characterization and enhanced visible-light photocatalytic activity of co-doped Zn2SnO4 nanoparticles. Chemical Physics, 490, 38–46.CrossRefGoogle Scholar
  13. Jeronsia, J. E., Joseph, L. A., Jaculine, M. M., Vinosha, P. A., & Dasa, S. J. (2016). Hydrothermal synthesis of zinc stannate nanoparticles for antibacterial applications. Journal of Taibah University for Science, 10, 601–606.CrossRefGoogle Scholar
  14. Jia, T., Fu, F., Long, F., Min, Z., Zhao, J., Chen, J., & Li, J. (2016). Synthesis, characterization and enhanced visible-light photocatalytic activity of Zn2SnO4/C nanocomposites with truncated octahedron morphology. Ceramics International, 42, 13893–13899.CrossRefGoogle Scholar
  15. Junploy, P., Phuruangrat, A., Plubphon, N., Thongtem, S., & Thongtem, T. (2017). Photocatalytic degradation of methylene blue by Zn2SnO4-SnO2 system under UV visible radiation. Materials Science in Semiconductor Processing, 66, 56–61.CrossRefGoogle Scholar
  16. León, D. E., Zúñiga-Benítez, H., Peñuela, G. A., & Mansilla, H. D. (2017). Photocatalytic removal of the antibiotic cefotaxime on TiO2 and ZnO suspensions under simulated sunlight radiation. Water, Air, and Soil Pollution, 228, 361.CrossRefGoogle Scholar
  17. Li, H., Jin, Z., Sun, H., Sun, L., Li, Q., Zhao, X., Jia, C. J., & Fan, W. (2014). Facile fabrication of p-BiOI/n-Zn2SnO4 heterostructures with highly enhanced visible light photocatalytic performances. Materials Reserarch Bulletin, 55, 196–204.CrossRefGoogle Scholar
  18. Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced Materials, 29, 1–20.CrossRefGoogle Scholar
  19. Macías-Tamez, R., Villanueva-Rodríguez, M., Ramos-Delgado, N. A., Maya-Treviño, L., & Hernández-Ramírez, A. (2017). Comparative study of the photocatalytic degradation of the herbicide 2,4-D using WO3/TiO2 and Fe2O3/TiO2 as catalysts. Water, Air, & Soil Pollution, 228, 379.CrossRefGoogle Scholar
  20. Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal Photochem Photobiol C: Photochem Reviews, 13, 169–189.CrossRefGoogle Scholar
  21. Nobbs, J. H. (1985). Kubelka-Munk theory and the prediction of reflectance. Review of Progress in Coloration and Related Topics banner, 15, 66–75.CrossRefGoogle Scholar
  22. Oliveira, J. S., Mazutti, M. A., Urquieta-Gonzalez, E. A., Foletto, E. L., & Jahn, S. L. (2016). Preparation of mesoporous Fe2O3-supported ZSM-5 zeolites by carbon-templating and their evaluation as photo-Fenton catalysts to degrade organic pollutant. Materials Research, 19, 1399–1406.CrossRefGoogle Scholar
  23. Raja, V. R., Rosaline, D. R., Suganthi, A., & Rajarajan, M. (2018). Facile sonochemical synthesis of Zn2SnO4-V2O5 nanocomposite as an effective photocatalyst for degradation of eosin yellow. Ultrasonics Sonochemistry, 44, 310–318.CrossRefGoogle Scholar
  24. Ren, B., Shen, W., Li, L., Wu, S., & Wang, W. (2018). 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes. Applied Surface Science, 447, 711–723.CrossRefGoogle Scholar
  25. Senthil, V. P., Gajendiran, J., Rao, R. G. S., Raj, S. G., Shanmugavel, T., & Kumar, G. R. (2018). Tailoring the phase, microstructure and magnetic properties of nanocrystalline cobalt ferrite. Materials Today: Proceedings, 56, 234–6237.Google Scholar
  26. Silvestri, S., Hennemann, B., Zanatta, N., & Foletto, E. L. (2018). Photocatalytic efficiency of TiO2 supported on raw red clay disks to discolour reactive red 141. Water Air and Soil Pollution, 229, 1–6.CrossRefGoogle Scholar
  27. Song, N., Gu, S., Wu, Q., Li, C., Zhou, J., Zhang, P., Wang, W., & Yue, M. (2018). Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size. Journal Magnetism and Magnetic Materials, 451, 793–798.CrossRefGoogle Scholar
  28. Wang, J., Li, H., Meng, S., Zhang, L., Fu, X., & Chen, S. (2017). One-pot hydrothermal synthesis of highly efficient SnOx/Zn2SnO4 composite photocatalyst for the degradation of methyl orange and gaseous benzene. Applied Catalysis B: Environmental, 200, 19–30.CrossRefGoogle Scholar
  29. Xiong, P., Fu, Y., Wang, L., & Wang, X. (2012). Multi-walled carbon nanotubes supported nickel ferrite: A magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols. Chemical Engineering Journal, 195–196, 149–157.CrossRefGoogle Scholar
  30. Yang, Z., Shi, Y., & Wang, B. (2017). Photocatalytic activity of magnetically anatase TiO2 with high crystallinity and stability for dyes degradation: Insights into the dual roles of SiO2 interlayer between TiO2 and CoFe2O4. Applied Surface Science, 399, 192–199.CrossRefGoogle Scholar
  31. Zhao, Q., Deng, X., Ding, M., Huang, J., Ju, D., & Xu, X. (2016). Synthesis of hollow cubic Zn2SnO4 sub-microstructures with enhanced photocatalytic performance. Journal of Alloys and Compounds, 671, 328–333.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Postgraduate Program in Chemical EngineeringFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations