Advertisement

Water, Air, & Soil Pollution

, 229:384 | Cite as

Organic Matter Effects on the Cr(VI) Removal Efficiency and Tolerance of Typha domingensis

  • M. M. Mufarrege
  • H. R. HadadEmail author
  • G. A. Di Luca
  • G. C. Sanchez
  • M. A. Maine
  • S. E. Caffaratti
  • M. C. Pedro
Article

Abstract

The removal efficiency and tolerance of Typha domingensis to Cr(VI) in treatments with and without organic matter (OM) addition were evaluated in microcosm-scale wetlands. Studied Cr(VI) concentrations were 15 mg L−1, 30 mg L−1, and 100 mg L−1, in treatments with and without OM addition, arranged in triplicate. Controls (without neither metal nor OM addition—without metal with OM addition) were disposed. Cr(VI) was removed efficiently from water in all treatments. OM addition enhanced significantly Cr(VI) and total Cr removals from water. In the treatments with OM addition, significantly higher Cr concentrations were found in sediment than the treatments without OM addition. Plants of the treatments without OM addition showed significantly higher Cr concentrations in tissues but lower biomass increase than the treatments with OM addition. The highest Cr concentrations in tissues were observed in submerged parts of leaves, followed by roots. According to SEM analysis, in the 100 mg L−1 treatments, the highest Cr accumulation was observed in the epidermis of old leaves. Although Cr(VI) produced changes in root morphology, the OM addition favored the plant growth. In T. domingensis, root morphological plasticity is an important mechanism to improve metal tolerance and Cr uptake in wetland systems minimizing the environmental impact.

Keywords

Wetlands Metals Macrophyte Nutrients 

Notes

Funding Information

This study was funded by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), and Agencia de Promoción Científica y Tecnológica.

References

  1. Abdel-Basset, R., Issa, A. A., & Adam, M. S. (1995). Chlorophyllase activity: effect of heavy metals and calcium. Photosynthetica, 31, 421–425.Google Scholar
  2. APHA, AWWA, & WEF. (2012). Standard methods for the examination of water and wastewater. Washington D.C.: American Public Health Association.Google Scholar
  3. Arduini, I., Masoni, A., & Ercoli, L. (2006). Effects of high chromium applications on Miscanthus during the period of maximum growth. Environmental and Experimental Botany, 58, 234–243.CrossRefGoogle Scholar
  4. Bonanno, G., & Vymazal, J. (2017). Compartmentalization of potentially hazardous elements in macrophytes: insights into capacity and efficiency of accumulation. Journal of Geochemical Exploration, 181, 22–30.CrossRefGoogle Scholar
  5. Campanella, M. V. H., Hadad, H. R., Maine, M. A., & Markariani, R. (2005). Efectos del fósforo de un efluente cloacal sobre la morfología interna y externa de Eichhornia crassipes (Mart. Solms) en un humedal artificial. Limnetica, 24, 263–272.Google Scholar
  6. Carrier, P., Baryla, A., & Havaux, M. (2003). Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta, 216, 939–950.Google Scholar
  7. Chandra, R., & Yadav, S. (2010). Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecological Engineering, 36, 1277–1284.CrossRefGoogle Scholar
  8. D’Ambrogio de Argüeso, A. (1986). Manual de técnicas en histología vegetal (pp. I–IV). Buenos Aires: Hemisfero Sur S.A.Google Scholar
  9. Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.CrossRefGoogle Scholar
  10. Di Luca, G. A., Maine, M. A., Mufarrege, M. M., Hadad, H. R., Sánchez, G. C., & Bonetto, C. A. (2011). Metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Ecological Engineering, 37, 1267–1275.CrossRefGoogle Scholar
  11. Eid, E. M., & Shaltout, K. H. (2014). Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecological Engineering, 73, 17–25.CrossRefGoogle Scholar
  12. Fendorf, S. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67, 5–71.CrossRefGoogle Scholar
  13. Gikas, P., & Romanos, P. (2006). Effects of tri-valent (Cr(III)) and hexavalent (Cr(VI)) chromium on the growth of activated sludge. Journal of Hazardous Materials, 133, 212–217.CrossRefGoogle Scholar
  14. Gill, L. W., Ring, P., Casey, B., Higgins, N. M. P., & Johnston, P. M. (2017). Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Science of The Total Environment, 601, 32–44.CrossRefGoogle Scholar
  15. Guilizzoni, P. (1991). The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Botany, 41, 87–109.CrossRefGoogle Scholar
  16. Hadad, H. R., Maine, M. A., & Bonetto, C. A. (2006). Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere, 63, 1744–1753.CrossRefGoogle Scholar
  17. Hadad, H. R., Maine, M. A., Natale, G. S., & Bonetto, C. (2007). The effect of nutrient addition on metal tolerance in Salvinia herzogii. Ecological Engineering, 31(2), 122–131.CrossRefGoogle Scholar
  18. Hadad, H. R., Mufarrege, M. M., Pinciroli, M., Di Luca, G. A., & Maine, M. A. (2010). Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Archives of Environmental Contamination and Toxicology, 58(3), 666–675.CrossRefGoogle Scholar
  19. Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.CrossRefGoogle Scholar
  20. Hassan, S. H., Talat, M., & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichlornia crassipes). Bioresource Technology, 98, 918–928.CrossRefGoogle Scholar
  21. Hechmi, N., Aissa, N. B., Abdenaceur, H., & Jedidi, N. (2014). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environmental Science and Pollution Research, 21(2), 1304–1313.CrossRefGoogle Scholar
  22. Heumann, H. G. (1987). Effects of heavy metals on growth and ultrastucture of Chara vulgar. Protoplasma, 136, 37–48.CrossRefGoogle Scholar
  23. Hunt, R. (1978). Studies in biology N° 96. London: Edward Arnold Ltd..Google Scholar
  24. Kabata-Pendias, A., & Pendias, H. (2011). Trace elements in soils and plants. Florida: CRC Press.Google Scholar
  25. Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands. Boca Raton: CRC Press.Google Scholar
  26. Kapitonova, O. A. (2002). Specific anatomical features of vegetative organs in some macrophyte species under conditions of industrial pollution. Russian Journal of Ecology, 33(1), 59–61.CrossRefGoogle Scholar
  27. Losi, M. E., Amrhein, C., & Frankenberger Jr., W. T. (1994). Environmental biochemistry of chromium. Environmental Biochemistry of Chromium, 136, 91–121.Google Scholar
  28. Maine, M. A., Hadad, H. R., Sánchez, G. C., Mufarrege, M. M., Di Luca, G. A., Caffaratti, S. E., & Pedro, M. C. (2013). Sustainability of a constructed wetland faced with a depredation event. Journal of Environmental Management, 128, 1–6.CrossRefGoogle Scholar
  29. Maine, M. A., Hadad, H. R., Sánchez, G., Caffaratti, S., & Pedro, M. C. (2016). Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes. International Journal of Phytoremediation, 18(3), 261–268.CrossRefGoogle Scholar
  30. Maine, M. A., Hadad, H. R., Sánchez, G. C., Di Luca, G. A., Mufarrege, M. M., Caffaratti, S. E., & Pedro, M. C. (2017). Long-term performance of two free-water surface wetlands for metallurgical effluent treatment. Ecological Engineering, 98, 372–377.CrossRefGoogle Scholar
  31. Mangabeira, P. A., Ferreira, A. S., de Almeida, A. A. F., Fernandes, V. F., Lucena, E., Souza, V. L., dos Santos Junior, A. J., Oliveira, A. H., Grenier-Loustalot, M. F., Barbier, F., & Silva, D. C. (2011). Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals, 24, 1017–1026.CrossRefGoogle Scholar
  32. Manios, T., Stentiford, E., & Millner, P. (2003). The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecological Engineering, 20, 65–74.CrossRefGoogle Scholar
  33. Mishra, V. K., & Tripathi, B. D. (2009). Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). Journal of Hazardous Materials, 164, 1059–1063.CrossRefGoogle Scholar
  34. Mufarrege, M. M., Hadad, H. R., Di Luca, G. A., & Maine, M. A. (2014). Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn. Ecotoxicology and Environmental Safety, 105(1), 90–96.CrossRefGoogle Scholar
  35. Mufarrege, M. M., Hadad, H. R., Di Luca, G. A., & Maine, M. A. (2015). The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn. Environmental Science and Pollution Research, 22, 286–292.CrossRefGoogle Scholar
  36. Mufarrege, M.M., Di Luca, G.A. Sanchez, G.C. Hadad, H.R., Pedro, M.C., & Maine, M.A. (2016). Effects of the presence of nutrients in the removal of high concentrations of Cr(III) by Typha domingensis. Environment and Earth Science, 75. doi: https://doi.org/10.1007/s12665-016-5693-3.
  37. Murphy, J., & Riley, J. (1962). A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  38. Nilratnisakorn, S., Thiravetyan, P., & Nakbanpote, W. (2007). Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals. Science of The Total Environment, 384, 67–76.CrossRefGoogle Scholar
  39. Prasad, M. N. V., & Freitas, H. M. O. (2003). Metal hyperaccumulation in plants- biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 285–321.CrossRefGoogle Scholar
  40. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.CrossRefGoogle Scholar
  41. Sinha, S., & Gupta, A. K. (2005). Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere, 61, 1204–1214.CrossRefGoogle Scholar
  42. Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47, 271–280.CrossRefGoogle Scholar
  43. Sultana, M. Y., Akratos, C. S., Pavlou, S., & Vayenas, D. V. (2014). Chromium removal in constructed wetlands: a review. International Biodeterioration & Biodegradatio, 96, 181–190.CrossRefGoogle Scholar
  44. Suñe, N., Sánchez, G., Caffaratti, S., & Maine, M. A. (2007). Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environmental Pollution, 145(2), 467–473.CrossRefGoogle Scholar
  45. Taylor, G. J., & Crowder, A. A. (1983). Uptake and accumulation of copper, nickel, and iron by Typha latifolia grown in solution culture. Canadian Journal of Botany, 61, 1825–1830.CrossRefGoogle Scholar
  46. Teles Gomes, M. V., de Souza, R. R., Teles, V. S., & Araújo Mendes, E. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.CrossRefGoogle Scholar
  47. USEPA. (1994). Method 200.2: Sample preparation procedure for spectrochemical determination of total recoverable elements. Rev. 2.8. Washington D.C.: United States Environmental Protection Agency.Google Scholar
  48. Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science & Technology, 45, 61–69.CrossRefGoogle Scholar
  49. Wahl, S., Ryser, P., & Edwards, P. J. (2001). Phenotypic plasticity of grass root anatomy in response to light intensity and nutrient supply. Annals of Botany, 88, 1071–1078.CrossRefGoogle Scholar
  50. Westlake, D. F. (1974). Macrophytes. In R. A. Vollenweider (Ed.), A manual on methods for measuring primary production in aquatic environments IBP Handbook N° 12 (pp. 32–42). Oxford: International Biological Programme, Blackwell Scientific Publications.Google Scholar
  51. Zhou, K. Y., Chen, S. S., & Li, M. Q. (1993). Effect of different levels of phosphorus nutrition on the photosynthesis and respiration tobacco leaf. Acta Phytophysiol Sinica, 19(1), 3–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Química Analítica, Instituto de Química Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería QuímicaUniversidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Santa FeArgentina

Personalised recommendations