Advertisement

Water, Air, & Soil Pollution

, 229:387 | Cite as

Hydrogeochemistry of the Subaé River Impacted by Lead Smelting Activities, Bahia State, Brazil: Geochemical Characterization and Fluxes of Metals

  • Paula Núbia Soares Dalto Motta
  • Thomas Vincent Gloaguen
  • Carolina Fonseca Couto
  • Patricia Merdy
  • Yves Lucas
Article

Abstract

The Subaé river watershed is considered one of the most critical Pb-impacted environments in Brazil and around the world, due to pollutant dispersion during 33 years of lead ore purification in Santo Amaro da Purification. Severe damages have been reported in biota and population, which depends on the Subaé river watershed quality for agriculture, fishing, and shellfish harvesting. This study aims to understand the geochemical characteristics and dynamics of the river close to the former Pb smelter. The river was sampled at eight sites upstream and eight sites downstream the smelter, near the estuary in the Todos os Santos Bay, six times during a year. Immediate analyses were performed by multiprobe. Major ions were measured by chromatography, dissolved metals by ICP-OES in the filtrated samples (0.45 μm), and particulate metals > 0.45 μm by EDX spectrometry. The ions Na+ and HCO3 are dominated in the river. Most of the samples (47.6%) were classified as sodic, due to oceanic saline intrusion during tide. Despite the high pollution caused by the smelter from 1960 to 1993, still observed in the surrounding soils, dissolved and particulate metals in the river remained low in all sites during the entire year. Only Cu presented some concentration above the threshold of the Brazilian regulations. The discharge of metals by the river into the Todos os Santos Bay appears to be low for Pb and Zn (2.2 and 14.3 kg km−1 year−1, respectively), but higher for Cu comparatively to other worldwide bays.

Keywords

Geochemical classification Metal discharge Estuarine environment Lead ore 

Notes

Funding Information

This study was financially supported by the CNPq–Conselho Nacional de Desenvolvimento Científico (Project no. 480647/2012-7).

References

  1. Akopyan, K., Petrosyan, V., Grigoryan, R., & Melkom Melkomian, D. (2018). Assessment of residential soil contamination with arsenic and lead in mining and smelting towns of northern Armenia. Journal of Geochemical Exploration, 184, 97–109.  https://doi.org/10.1016/j.gexplo.2017.10.010.CrossRefGoogle Scholar
  2. Asmus, H. E., & Ponte, F. C. (1973). The Brazilian marginal basins. In The South Atlantic (pp. 87–133). Boston: Springer US.  https://doi.org/10.1007/978-1-4684-3030-1_3.CrossRefGoogle Scholar
  3. Bellinger, D. C. (2011). A strategy for comparing the contributions of environmental chemicals and other risk factors to neurodevelopment of children. Environmental Health Perspectives, 120(4), 501–507.  https://doi.org/10.1289/ehp.1104170.CrossRefGoogle Scholar
  4. Bomfim, M. R., Santos, J. A. G., Costa, O. V., Otero, X. L., Boas, G. d. S. V., Capelão, V. d. S., et al. (2015). Genesis, characterization, and classification of mangrove soils in the Subaé river basin, Bahia, Brazil. Revista Brasileira de Ciencia do Solo, 39(39), 1247–1260.  https://doi.org/10.1590/01000683rbcs20140555.CrossRefGoogle Scholar
  5. Buccianti, A., Nisi, B., Martín-Fernández, J. A., & Palarea-Albaladejo, J. (2014). Methods to investigate the geochemistry of groundwaters with values for nitrogen compounds below the detection limit. Journal of Geochemical Exploration, 141, 78–88.  https://doi.org/10.1016/J.GEXPLO.2014.01.014.CrossRefGoogle Scholar
  6. Carvalho, F. M., Barreto, M. L., Silvany-Neto, A. M., Waldron, H. A., & Tavares, T. M. (1984a). Multiple causes of anaemia amongst children living near a lead smelter in Brazil. Science of the Total Environment, 35(1), 71–84.  https://doi.org/10.1016/0048-9697(84)90369-3.CrossRefGoogle Scholar
  7. Carvalho, F. M., Tavares, T. M., Souza, S. P., & Linhares, P. S. (1984b). Lead and cadmium concentrations in the hair of fishermen from the Subae River basin, Brazil. Environmental Research, 33(2), 300–306.  https://doi.org/10.1016/0013-9351(84)90027-6.CrossRefGoogle Scholar
  8. Chen, B., Liu, J., Hu, L., Liu, M., Wang, L., Zhang, X., & Fan, D. (2017). Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River estuary and adjacent areas. Science of the Total Environment, 580, 936–945.  https://doi.org/10.1016/j.scitotenv.2016.12.042.CrossRefGoogle Scholar
  9. CONAMA - Conselho Nacional do Meio Ambiente. Resolução CONAMA No420. , Diário Oficial da União no 249 81–84 (2009). Brazil. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620
  10. Cortada, U., Hidalgo, M. C., Martínez, J., & Rey, J. (2018). Impact in soils caused by metal(loid)s in lead metallurgy. The case of La Cruz smelter (southern Spain). Journal of Geochemical Exploration, 190, 302–313.  https://doi.org/10.1016/J.GEXPLO.2018.04.001.CrossRefGoogle Scholar
  11. Cosselman, K. E., Navas-Acien, A., & Kaufman, J. D. (2015). Environmental factors in cardiovascular disease. Nature Reviews Cardiology, 12, 627.  https://doi.org/10.1038/nrcardio.2015.152.CrossRefGoogle Scholar
  12. Cruz, M. A. S., Santos, L. T. S. D. O., Lima, L. G. L. M., & De Jesus, T. B. (2013). Caracterização granulométrica e mineralógica dos sedimentos como suporte para análise de contaminação ambiental em nascentes do rio Subaé, Feira de Santana (BA). Geochimica Brasiliensis, 27(1), 49–62.  https://doi.org/10.5327/Z0102-9800201300010005.CrossRefGoogle Scholar
  13. da Silva, A. J. P., Lopes, R. d. C., Vasconcelos, A. M., & Bahia, R. B. C. (2003). Paleozoic and Meso-Cenozoic Sedimentary Basins. In L. A. Bizzi, C. Schobbenhaus, & W. U. Mohriak (Eds.), Geologia, Tectônica e Recursos Minerais do Brasil (pp. 55–85). Brasília: CPRM.Google Scholar
  14. da Silva, G. S., Gloaguen, T. V., Couto, C. F., & Motta, P. N. S. D. (2017). Persistence and mobility of metals in an estuarine environment 25 years after closure of a lead smelter, Bahia state, Brazil. Environmental Earth Sciences, 76(16).  https://doi.org/10.1007/s12665-017-6886-0.
  15. de Andrade Lima, L. R. P., & Bernardez, L. A. (2011). Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil. Journal of Hazardous Materials, 189(3), 692–699.  https://doi.org/10.1016/j.jhazmat.2011.02.091.CrossRefGoogle Scholar
  16. de Lacerda, L. D., Pfeiffer, W. C., & Fiszman, M. (1987). Heavy metal distribution, availability and fate in Sepetiba Bay, S.E. Brazil. Science of the Total Environment, 65, 163–173.  https://doi.org/10.1016/0048-9697(87)90169-0.CrossRefGoogle Scholar
  17. de Souza Guerra, C., Barroso, R. C., de Almeida, A. P., Peixoto, I. T. A., Moreira, S., de Sousa, F. B., & Gerlach, R. F. (2014). Anatomical variations in primary teeth microelements with known differences in lead content by micro-synchrotron radiation X-ray fluorescence (μ-SRXRF) – a preliminary study. Journal of Trace Elements in Medicine and Biology, 28(2), 186–193.  https://doi.org/10.1016/j.jtemb.2014.01.007.CrossRefGoogle Scholar
  18. Fiałkiewicz-Kozieł, B., De Vleeschouwer, F., Mattielli, N., Fagel, N., Palowski, B., Pazdur, A., & Smieja-Król, B. (2018). Record of Anthropocene pollution sources of lead in disturbed peatlands from southern Poland. Atmospheric Environment, 179, 61–68.  https://doi.org/10.1016/J.ATMOSENV.2018.02.002.CrossRefGoogle Scholar
  19. Gao, B., Liu, Y., Sun, K., Liang, X., Peng, P., Sheng, G., & Fu, J. (2008). Precise determination of cadmium and lead isotopic compositions in river sediments. Analytica Chimica Acta, 612(1), 114–120.  https://doi.org/10.1016/J.ACA.2008.02.020.CrossRefGoogle Scholar
  20. Gibbs, R.J. (1970) Mechanisms Controlling World Water Chemistry. Science 170 (3962):1088-1090Google Scholar
  21. Gloaguen, T. V. T. V., & Passe, J. J. J. J. (2017). Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil. Chemosphere, 186, 31–42.  https://doi.org/10.1016/j.chemosphere.2017.07.134.CrossRefGoogle Scholar
  22. Han, G., & Liu, C.-Q. (2004). Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chemical Geology, 204, 1–2), 1–21.  https://doi.org/10.1016/J.CHEMGEO.2003.09.009.CrossRefGoogle Scholar
  23. Han, L., Gao, B., Wei, X., Gao, L., Xu, D., & Sun, K. (2015). The characteristic of Pb isotopic compositions in different chemical fractions in sediments from Three Gorges Reservoir, China. Environmental Pollution, 206, 627–635.  https://doi.org/10.1016/J.ENVPOL.2015.08.030.CrossRefGoogle Scholar
  24. Han, L., Gao, B., Hao, H., Zhou, H., Lu, J., & Sun, K. (2018). Lead contamination in sediments in the past 20 years: a challenge for China. Science of the Total Environment, 640–641, 746–756.  https://doi.org/10.1016/J.SCITOTENV.2018.05.330.CrossRefGoogle Scholar
  25. Hansson, S. V., Claustres, A., Probst, A., De Vleeschouwer, F., Baron, S., Galop, D., et al. (2017). Atmospheric and terrigenous metal accumulation over 3000 years in a French mountain catchment: local vs distal influences. Anthropocene, 19, 45–54.  https://doi.org/10.1016/J.ANCENE.2017.09.002.CrossRefGoogle Scholar
  26. Hermes, L.C., & Silva A. de S. (2004). Avaliação da qualidade das águas: manual prático. Brasília: Embrapa Informação Tecnológica.Google Scholar
  27. Jeon, S., Kwon, M. J., Yang, J., & Lee, S. (2017). Identifying the source of Zn in soils around a Zn smelter using Pb isotope ratios and mineralogical analysis. Science of the Total Environment, 601–602, 66–72.  https://doi.org/10.1016/J.SCITOTENV.2017.05.181.CrossRefGoogle Scholar
  28. Karageorgis, A. P., Nikolaidis, N. P., Karamanos, H., & Skoulikidis, N. (2003). Water and sediment quality assessment of the Axios River and its coastal environment. Continental Shelf Research, 23(17–19), 1929–1944.  https://doi.org/10.1016/J.CSR.2003.06.009.CrossRefGoogle Scholar
  29. Kristensen, L. J., Taylor, M. P., & Flegal, A. R. (2017). An odyssey of environmental pollution: the rise, fall and remobilisation of industrial lead in Australia. Applied Geochemistry, 83, 3–13.  https://doi.org/10.1016/J.APGEOCHEM.2017.02.007.CrossRefGoogle Scholar
  30. Kulkarni, R., Deobagkar, D., & Zinjarde, S. (2018). Metals in mangrove ecosystems and associated biota: a global perspective. Ecotoxicology and Environmental Safety, 153, 215–228.  https://doi.org/10.1016/J.ECOENV.2018.02.021.CrossRefGoogle Scholar
  31. Lanphear, B. P. (2017). Low-level toxicity of chemicals: no acceptable levels? PLoS Biology, 15(12), e2003066.  https://doi.org/10.1371/journal.pbio.2003066.CrossRefGoogle Scholar
  32. Lanphear, B. P., Rauch, S., Auinger, P., Allen, R. W., & Hornung, R. W. (2018). Low-level lead exposure and mortality in US adults: a population-based cohort study. The Lancet Public Health, 3, e177–e184.  https://doi.org/10.1016/S2468-2667(18)30025-2.CrossRefGoogle Scholar
  33. Li, C., Le Roux, G., Sonke, J., van Beek, P., Souhaut, M., Van der Putten, N., & De Vleeschouwer, F. (2017). Recent 210Pb, 137Cs and 241Am accumulation in an ombrotrophic peatland from Amsterdam Island (southern Indian Ocean). Journal of Environmental Radioactivity, 175–176, 164–169.  https://doi.org/10.1016/J.JENVRAD.2017.05.004.CrossRefGoogle Scholar
  34. Lima, G. M. P., & Lessa, G. C. (2001). The fresh-water discharge in Todos Os Santos Bay (BA) and its significance to the general water circulation. Pesquisas em Geociencias, 28(2), 13.Google Scholar
  35. Magnavita, L. P., da Silva, R. R., & Sanches, C. P. (2005). Field trip guide of the Recôncavo basin, NE Brazil. Petrobras Geosciences Bulletim, 13(2), 301–334.Google Scholar
  36. Milani, E. J., Rangel, H. D., Bueno, G. V., Stica, J. M., Winter, W. R., Caixeta, J. M., & Neto, O. d. C. (2007). Brazilian sedimentary basins - stratigraphic charts. Boletim de Geociências da Petrobras, 1, 183–205.Google Scholar
  37. Mohriak, W. U. (2003). Sedimentary basins of the Brazilian continental margin. In L. A. Bizzi, C. Schobbenhaus, & W. U. Mohriak (Eds.), Geologia, Tectônica e Recursos Minerais do Brasil (pp. 87–94) CPRM.Google Scholar
  38. Motta, P. N. S. D., Gloaguen, T. V., Santos, M. S. T., Ferreira, A. T. d. S., & Motta, T. O. (2017). Morphometric analysis of River Basin of Subaé, Bahia, Brasil. Ambiência, 13(2), 470–485.  https://doi.org/10.5935/ambiencia.2017.02.14.CrossRefGoogle Scholar
  39. Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease—a systematic review. Environmental Health Perspective, 115(3), 472–482.  https://doi.org/10.1289/ehp.9785.CrossRefGoogle Scholar
  40. Nicolau, R., Lucas, Y., Merdy, P., & Raynaud, M. (2012). Base flow and stormwater net fluxes of carbon and trace metals to the Mediterranean Sea by an urbanized small river. Water Research, 46(20), 6625–6637 https://www.sciencedirect.com/science/article/pii/S0043135412000516?via%3Dihub. Accessed 18 July 2018.CrossRefGoogle Scholar
  41. Ollivier, P., Radakovitch, O., & Hamelin, B. (2011). Major and trace element partition and fluxes in the Rhône River. Chemical Geology, 285(1–4), 15–31.  https://doi.org/10.1016/J.CHEMGEO.2011.02.011.CrossRefGoogle Scholar
  42. Paoliello, M. M. B., & De Capitani, E. M. (2007). Occupational and environmental human lead exposure in Brazil. Environmental Research, 103(2), 288–297.  https://doi.org/10.1016/j.envres.2006.06.013.CrossRefGoogle Scholar
  43. Peixoto, J. de S. (2013). Loss of soil and transport of Pb and Zn by erosion, Santo Amaro, Bahia. Master’s thesis. University of the Reconcavo of Bahia.Google Scholar
  44. Prates, I., & Fernandez, R. (2015). Bacia Potiguar: Sumário Geológico e Setores em Oferta - Superintendência de Definição de Blocos SDB.Google Scholar
  45. Roy, S., Gaillardet, J., & Allègre, C. J. (1999). Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63(9), 1277–1292.  https://doi.org/10.1016/S0016-7037(99)00099-X.CrossRefGoogle Scholar
  46. Santos, L. T. S. d. O., & Jesus, T. B. d. (2014). Caracterização de metais pesados das águas superficiais da bacia do Rio Subaé (Bahia). Geochimica Brasiliensis, 28(2), 137–148.  https://doi.org/10.5327/Z0102-9800201400020003.CrossRefGoogle Scholar
  47. Schober, S. E., Mirel, L. B., Graubard, B. I., Brody, D. J., & Flegal, K. M. (2006). Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III Mortality Study. Environmental Health Perspectives, 114(10), 1538–1541.  https://doi.org/10.1289/ehp.9123.CrossRefGoogle Scholar
  48. Shukla, V., Shukla, P., & Tiwari, A. (2018). Lead poisoning. Indian Journal of Medical Specialities, 9(3), 146–149.  https://doi.org/10.1016/J.INJMS.2018.04.003.CrossRefGoogle Scholar
  49. Silvany-Neto, A. M. M., Carvalho, F. M. M., Chaves, M. E. C. E. C., Brandão, A. M. M., & Tavares, T. M. M. (1989). Repeated surveillance of lead poisoning among children. Science of the Total Environment, 78(C), 179–186.  https://doi.org/10.1016/0048-9697(89)90032-6.CrossRefGoogle Scholar
  50. Tankéré, S. P. C., Price, N. B., & Statham, P. J. (2000). Mass balance of trace metals in the Adriatic Sea. Journal of Marine Systems, 25(3–4), 269–286.  https://doi.org/10.1016/S0924-7963(00)00021-X.CrossRefGoogle Scholar
  51. Teixeira Netto, A. S., & de Oliveira, J. N. (1985). o. Revista Brasileira de Geociencias, 15, 97–102.Google Scholar
  52. Wiederkehr, F. (2010). Análise Tectono-Estratigráfica das formações Itaparica e Água Grande (Bacia do Recôncavo, Bahia). Universidade Federal do Rio Grande do Sul.Google Scholar
  53. Xu, Y., Sun, Q., Ye, X., Yin, X., Li, D., Wang, L., et al. (2017). Geochemical analysis of sediments from a semi-enclosed bay (Dongshan Bay, Southeast China) to determine the anthropogenic impact and source. Chemosphere, 174, 764–773.  https://doi.org/10.1016/j.chemosphere.2017.01.081.CrossRefGoogle Scholar
  54. Zaborska, A. (2014). Anthropogenic lead concentrations and sources in Baltic Sea sediments based on lead isotopic composition. Marine Pollution Bulletin, 85(1), 99–113.  https://doi.org/10.1016/J.MARPOLBUL.2014.06.013.CrossRefGoogle Scholar
  55. Zhang, K., Chai, F., Zheng, Z., Yang, Q., Zhong, X., Fomba, K. W., & Zhou, G. (2018). Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. Journal of Environmental Sciences, in press.  https://doi.org/10.1016/J.JES.2018.04.018.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Federal University of Reconcavo of BahiaCruz das AlmasBrazil
  2. 2.Laboratory PROTEE (PROcessus de Transferts et d’Echanges dans l’EnvironnementUniversity of ToulonLa GardeFrance

Personalised recommendations