Water, Air, & Soil Pollution

, 229:385 | Cite as

Peroxicoagulation and Solar Peroxicoagulation for Landfill Leachate Treatment Using a Cu–Fe System

  • Luis A. Castillo-Suárez
  • Francisco Bruno-Severo
  • Violeta Lugo-Lugo
  • Mario Esparza-Soto
  • Verónica Martínez-Miranda
  • Ivonne Linares-HernándezEmail author


Leachates, particularly those from mature landfills, are difficult to treat by biological processes because of their high toxicity and low biodegradability. Therefore, the development of new treatment technology is necessary. The treatment of landfill leachate by peroxicoagulation and solar peroxicoagulation using a batch electrolytic reactor with a Fe cathode and a Cu anode is proposed. The tested operational variables included pH (2.8 and 8.2), current density (11 and 16 mA cm−2), treatment time (5, 10, 15, 20, 25, and 30 min), and presence of solar ultraviolet (UV) light and were collected using a compound parabolic collector. The optimum conditions were a pH, current density, and treatment time of 2.8, 16 mA cm−2, and 10 min, respectively. The presence of UV did not have a significant effect. The chemical oxygen demand and biochemical oxygen demand removed were 62.3% and 55.5%, respectively. The results of UV-visible absorption, fluorescence, and Fourier transform infrared spectroscopy measurements confirm the oxidation process.


Peroxicoagulation Solar peroxicoagulation Cu–Fe system Landfill Leachate 


Funding Information

This work was supported by “Bridging the Americas: Promoting Global Solutions for Local Landfill Problems through Student Services and Learning (4547/2018E),” and we thank the National Council for Science and Technology (CONACYT) for its support, a scholarship grant, and the economic support of the 243681 project.


  1. Alimba, C., Gandhi, D., Sivanesan, S., Bhanarkar, M., Naoghare, P., & Bakare, A. (2016). Chemical characterization of simulated landfill soli leachates from Nigeria and India their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere, 164, 469–479.CrossRefGoogle Scholar
  2. American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Water Works Association, Water Environment Federation.Google Scholar
  3. Bakare, A., Alimba, C., & Alabi, O. (2013). Genotoxicity and mutagenicity of solid waste leachates: a review. African Journal of Biotechnology, 12, 4206–4220.CrossRefGoogle Scholar
  4. Barrera Díaz, C., Frontana Uribe, B., & Bilyeu, B. (2014). Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2. Chemosphere, 105, 160–164.CrossRefGoogle Scholar
  5. Blanco, J., Malato, S., Fernández, P., Vidal, A., Morales, A., Trincado, P., & Rangel, C. (2000). Compound parabolic concentrator technology development to commercial solar detoxification applications. Solar Energy, 67, 317–330.CrossRefGoogle Scholar
  6. Bouhezila, F., Hariti, M., Lounici, H., & Mameri, N. (2011). Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination, 208, 347–353.CrossRefGoogle Scholar
  7. Brillas, E., Boye, B., Sires, I., Garrido, J., Rodríguez, R., Arias, C., & Comninellis, C. (2004). Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta, 49, 4487–4496.CrossRefGoogle Scholar
  8. Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction. Chemical Reviews, 109, 6570–6631.CrossRefGoogle Scholar
  9. Brillas, E., Sirés, I., & Cabot Pere, L. (2010). Use of both anode and cathode reactions in wastewater treatment. In G. Chen (Ed.), Electrochemistry for the environment. New York: Springer.Google Scholar
  10. Chen, W., Westerhoff, P., & Leenheer, J. (2003). Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37, 5701–5710.CrossRefGoogle Scholar
  11. Cui, Y. H., Xue, W. J., Yang, S. Q., Tu, J. L., Guo, X. L., & Liu, Z.-Q. (2018). Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration. Chemical Engineering Journal, 353, 208–217.CrossRefGoogle Scholar
  12. De Morais Lopes, J., & Zomora Peralta, P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachate. Journal of Hazardus Materials, B123, 181–186.CrossRefGoogle Scholar
  13. Dia, O., Drogui, P., Buelna, G., & Dubé, R. (2018). Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment. Waste Management, 75, 391–399.CrossRefGoogle Scholar
  14. Fernández, P., Blanco, J., Sichel, C., & Malato, S. (2005). Water disinfection by solar photocatalysis using compound parabolic collectors. Catalysis Today, 101, 345–352.CrossRefGoogle Scholar
  15. Garcia Segura, S., Brillas, E., Cornejo Ponce, L., & Salazar, R. (2016). Effect of the Fe3+/Cu2+ ratio on the removal of the recalcitrant oxalic and oxamic acids by electro-Fenton and solar photoelectro-Fenton. Solar Energy, 124, 242–253.CrossRefGoogle Scholar
  16. García-Montoya, M. F., Gutiérrez García, S., Alatorre Ordaz, A., Galindo, R., Ornelas, R., & Peralta Hernández, J. M. (2015). Application of electrochemical/BDD process for the treatment wastewater effluents containing pharmaceutical compounds. Journal of Industrial and Engineering Chemistry, 31, 238–243.CrossRefGoogle Scholar
  17. Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299.CrossRefGoogle Scholar
  18. Greenman, J., Gálvez, A., Giusti, L., & Leropoulos, L. (2009). Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme and Microbial Technology, 44, 112–119.CrossRefGoogle Scholar
  19. Guo, J. S., Abbas, A. A., Chen, Y. P., Liu, Z. P., Fang, F., & Chen, P. (2010). Treatment of landfill leachate using a combined stripping, Fenton, SBR and coagulation process. Journal of Hazardous Materials, 178, 699–705.CrossRefGoogle Scholar
  20. Hadj Ltaïef, A., Sabatino, S., Proietto, F., Ammar, S., Gadri, A., Galia, A., & Scialdone, O. (2018). Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes. Chemosphere, 202, 111–118.CrossRefGoogle Scholar
  21. Hansen, A., Kraus, T., Pellerin, B., Fleck, J., Downing, B., & Bergamaschi, B. (2016). Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limmonology and Oceanography, 61, 1015–1032.CrossRefGoogle Scholar
  22. Ishaka, A. R., Hamid, F. S., Mohamad, S., & Tay, K. S. (2018). Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process. Waste Management, 76, 575–581.CrossRefGoogle Scholar
  23. Kang, K.-H., Sang Shin, H., & Park, H. (2002). Characterization of humic subtances present in landfill leachates with different landfill ages and ist implications. Water Research, 36, 4023–4032.CrossRefGoogle Scholar
  24. Klauck, C. R., Giacobb, A., Altenhofen, C. G., Silva, L. B., Meneguzzi, A., Bernardes, A. M., & Rodrigues, M. A. S. (2017). Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorptions. Environmental Technology and Innovation, 8, 246–255.CrossRefGoogle Scholar
  25. Kolthoff, I. M., Stein, S. B., Meehan, E. J., & Sandel, E. B. (Eds.). (1970). Quantitative chemical analysis, 4th edn. Londonx: MacmillanGoogle Scholar
  26. Labiadh, L., Fernanes, A., Lurdes, C., Pacheco, M. J., Gadri, A., Ammar, S., & Lopes, A. (2016). Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate. Journal of Environmental Management, 181, 515–521.CrossRefGoogle Scholar
  27. Lenz, S., Böhm, K., Ottner, R., & Huber-H, M. (2016). Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy. Waste Management, 55, 321–329.CrossRefGoogle Scholar
  28. López, A., Pagano, M., Volpe, A., & Di Pinto, A. (2003). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54, 1005–1010Lu.CrossRefGoogle Scholar
  29. Lugo Lugo, V., Barrera Días, C., Bilyeu, B., Balderas Hernández, P., Ureña Nuñuez, F., & Sánchez Mendieta, V. (2010). Cr (VI) reduction in wastewater a bimetallic galvanic reactor. Journal Hazardous Materials, 176, 418–425.CrossRefGoogle Scholar
  30. Mohajeri, S., Abdul, A. H., Isa, M. H., Zahed, M. A., & Adlan, M. N. (2010). Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. Journal of Hazardous Materials, 176, 749–758.CrossRefGoogle Scholar
  31. Moreira, F. C., Rui, A. R. B., Brillas, E., & Vilar, V. J. P. (2016). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217–261.CrossRefGoogle Scholar
  32. Naveen, B. P., Madha, D., Mahapatrab, T. G. S., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12.CrossRefGoogle Scholar
  33. Parra, S., Sarria, V., Malato, S., Péringer, P., & Pulgarin, C. (2000). Photochemical versus couple photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon. Applied Catalysis, 27, 153–168.CrossRefGoogle Scholar
  34. Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, Supplement 2. S2567–S2574.Google Scholar
  35. Pourbaix, M. (1974). Atlas of electrochemical equilibrium in aqueous solutions. Houston: NACE International Cebelcor.Google Scholar
  36. Qiang, Z., Chang, J.-H., & Huang, C.-P. (2002). Electrochemical generation of hydrogen peroxide from dissolve oxygen in acidic solutions. Water Research, 36, 85–94.CrossRefGoogle Scholar
  37. Rajca, M., & Bodzek, M. (2013). Kinetics of fulvics and humic acids photodegradation in water solutions. Separation and Purification Technology, 120, 35–42.CrossRefGoogle Scholar
  38. Renou, S., Givaudan, J., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.CrossRefGoogle Scholar
  39. Reuter, J. H., & Perdue, E. M. (1977). Importance of heavy metal-organic matter interactions in natural waters. Geochimica et Cosmochimica, 41, 325–334.CrossRefGoogle Scholar
  40. Sánchez Pérez, J., Soriano Molina, P., Rivas, G., García Sánchez, J., Casas López, J., & Fernández Sevilla, J. (2017). Effect of temperature and photo absorpion on the kinetics of micropollutant removal by solar photo-Fenton in raceway pond reactors. Chemical Engineering Journal, 310(part 2), 464–472.CrossRefGoogle Scholar
  41. Sarria, V., Deront, M., Péringer, P., & Pulgarin, C. (2003). Degradation of a biorecalcitrant dye precursor present in indsutrial wastewater by integrated iron (III) photoassited-biological treatment. Applied Catalysis, 40, 231–246.CrossRefGoogle Scholar
  42. Silva, A., Dezotti, M., & Sant’Anna, G. (2004). Treatment and detoxification of sanitary landfill leachate. Chemosphere, 55(2), 207–214.CrossRefGoogle Scholar
  43. Slack, R., Gronow, J., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Sciencie of The Total Environment, 337(1–3), 119–137.CrossRefGoogle Scholar
  44. Stevenson, F. J. (1994). Humus chemistry. Illinois: Wiley.Google Scholar
  45. Tak, S.-Y., Kim, M.-K., Lee, J.-E., Lee, Y.-M., & Zoh, K.-D. (2018). Degradation mechanism of anatoxin-a in UV-C/H2O2 reaction. Chemical Engineering Journal, 334, 1016–1022.CrossRefGoogle Scholar
  46. Tauchert, E., Schneider, S., de Morais, J. L., & Peralta-Zamora, P. (2006). Photochemically-assisted electrochemical degradation of landfill leachate. Chemosphere, 64, 1458–1463.CrossRefGoogle Scholar
  47. Umar, M., Abdul Aziz, H., & Suffian Yusoff, M. (2010). Trends in the use Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Management, 30(11), 2113–2121.CrossRefGoogle Scholar
  48. Velázquez-Peña, S., Linares Hernández, I., Martínez Miranda, V., Barrera Díaz, C., Lugo-Lugo, V., & Bilyeu, B. (2013). Boron-doped diamond electrode performance in Cr (VI) reduction using synthetic and plating wastewater. Separation Science and Technology, 48, 2900–2909.CrossRefGoogle Scholar
  49. Venu Devika, R., Gandhimathi, P., Nidheesh, S., & Ramesh, S. (2014). Treatment of stabilized landfill leachate using peroxicoagulation process. Separation and Purification Technology, 29, 64–70.CrossRefGoogle Scholar
  50. Vilar, V., Rocha, E., Mota, F., & Fonseca, A. (2011). Treatment of sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Research, 45, 2647–2658.CrossRefGoogle Scholar
  51. Xiaofeng, X., Peng, L., Songhu, Y., Man, T., Mingsen, L., & Wenjing, X. (2013). Cu-catalytic generation of reactive oxidizing species from H2 and O2 produced by water electrolys is for electro-Fenton degradation of organic contaminants. Chemical Engineering Journal, 233, 117–123.CrossRefGoogle Scholar
  52. Yang, Z., & Zhou, S. (2008). The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. Chemosphere, 72, 1751–1756.CrossRefGoogle Scholar
  53. Zhang, J., Wu, X., Qiu, D., Mao, J., & Zhang, H. (2017). Pilot scale in situ treatment of landfill leachate using combined coagulation-flocculation, hydrolisis acidification, SBR and electro-Fenton oxidation. Enviromental Technology, 3330, 1–10.Google Scholar
  54. Zhou, L., Hu, Z., Zhang, C., Bi, Z., Jin, T., & Zhou, M. (2013). Electrogneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Separation and Purification Technology, 111, 131–136.CrossRefGoogle Scholar
  55. Zhou, B., Yu, Z., Wei, Q., Long, H. Y., Xie, Y., & Wang, Y. (2016). Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. Applied Surface Science, 377, 406–415.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luis A. Castillo-Suárez
    • 1
  • Francisco Bruno-Severo
    • 2
  • Violeta Lugo-Lugo
    • 3
  • Mario Esparza-Soto
    • 1
  • Verónica Martínez-Miranda
    • 1
  • Ivonne Linares-Hernández
    • 1
    Email author return OK on get
  1. 1.Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA)Universidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Tecnológico de Estudios Superiores de JocotitlánJocotitlánMexico
  3. 3.División de Ciencias Básicas e Ingeniería, Departamento de Recursos de la TierraUniversidad Autónoma Metropolitana Unidad LermaLermaMexico

Personalised recommendations