Advertisement

Water, Air, & Soil Pollution

, 229:369 | Cite as

Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower

  • Fande Meng
  • Decheng Jin
  • Kai Guo
  • Steven L. Larson
  • John H. Ballard
  • Liangmei Chen
  • Zikri Arslan
  • Guodong Yuan
  • Jeremy R. White
  • Lixiang Zhou
  • Youhua Ma
  • Charles A. Waggoner
  • Fengxiang X. Han
Article

Abstract

Anthropogenic activities, such as ore mining and processing, nuclear power generation, and weapon tests, have generated uranium (U) contamination to soils and waters. The mobility and bioavailability of U are influenced by its sources, speciation, and plant species. Phytoremediation has emerged as an environmentally friendly, cost-effective green technology to remediate radioisotope- and metal-contaminated soils. The main objective of this study was to explore the feasibility using sunflower (Helianthus annuus) and Indian mustard (Brassica juncea) in cleaning up soils with UO2, UO3, and UO2(NO3)2. Uranium was found to be bioaccumulated in plant roots more than plant shoots. Uranium uptake by both plant species was significantly higher from the UO3- and uranyl-contaminated soils than from UO2-contaminated soils. UO3- and UO2(NO3)2-contaminated soils showed higher exchangeable, weak acid extractable, and labile U than the UO2-contaminated soils. After a growing season, three U forms decreased as redistribution/transformation of U resulted in U species with lower extractability. This study indicates the importance of U speciation in soil with regard to the potential use of sunflower and Indian mustard for phytoremediation of U-contaminated soils.

Keywords

Depleted uranium U speciation Redistribution Plant species Phytoremediation 

Notes

Funding

This study was supported by the U.S. Army Engineer Research and Development Center (W912HZ-16-2-0021), the U.S. Nuclear Regulatory Commission (NRC-HQ-84-15-G-0042 and NRC–HQ-12-G-38-0038) and the U.S. Department of Commerce (NOAA) (NA11SEC4810001-003499).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abdelouas, A. (2006). Uranium mill tailings: Geochemistry, mineralogy, and environmental impact. Elements, 2(6), 335–341.CrossRefGoogle Scholar
  2. Adesodun, J. K., Atayese, M. O., Agbaje, T. A., Osadiaye, B. A., Mafe, O. F., & Soretire, A. A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water, Air, & Soil Pollution, 207(1–4), 195–201.CrossRefGoogle Scholar
  3. Alsabbagh, A. H., & Abuqudaira, T. M. (2017). Phytoremediation of Jordanian uranium-rich soil using sunflower. Water, Air, & Soil Pollution, 228(6), 219.CrossRefGoogle Scholar
  4. Baetz, U., & Martinoia, E. (2014). Root exudates: the hidden part of plant defense. Trends in Plant Science, 19(2), 90–98.CrossRefGoogle Scholar
  5. Bednar, A. J., Medina, V. F., Ulmer-Scholle, D. S., Frey, B. A., Johnson, B. L., Brostoff, W. N., & Larson, S. L. (2007). Effects of organic matter on the distribution of uranium in soil and plant matrices. Chemosphere, 70(2), 237–247.CrossRefGoogle Scholar
  6. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465.CrossRefGoogle Scholar
  7. Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.CrossRefGoogle Scholar
  8. Choudhury, M. R., Islam, M. S., Ahmed, Z. U., & Nayar, F. (2016). Phytoremediation of heavy metal contaminated buriganga riverbed sediment by Indian mustard and marigold plants. Environmental Progress & Sustainable Energy, 35(1), 117–124.CrossRefGoogle Scholar
  9. Cordeiro, C., Favas, P. J. C., Pratas, J., Sarkar, S. K., & Venkatachalam, P. (2016). Uranium accumulation in aquatic macrophytes in an uraniferous region: relevance to natural attenuation. Chemosphere, 156, 76–87.CrossRefGoogle Scholar
  10. Dang, D. H., Novotnik, B., Wang, W., Georg, R. B., & Evans, R. D. (2016). Uranium isotope fractionation during adsorption, (co)precipitation, and biotic reduction. Environmental Science & Technology, 50(23), 12695–12704.CrossRefGoogle Scholar
  11. Dang, D. H., Wang, W., Pelletier, P., Poulain, A. J., & Evans, R. D. (2018). Uranium dispersion from U tailings and mechanisms leading to U accumulation in sediments: Insights from biogeochemical and isotopic approaches. Science of the Total Environment, 610-611, 880–891.CrossRefGoogle Scholar
  12. Duquène, L., Vandenhove, H., Tack, F., Meers, E., Baeten, J., & Wannijn, J. (2009). Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Science of the Total Environment, 407(5), 1496–1505.CrossRefGoogle Scholar
  13. Fathi, R. A., Matti, L. Y., Al-Salih, H. S., & Godbold, D. (2013). Environmental pollution by depleted uranium in Iraq with special reference to Mosul and possible effects on cancer and birth defect rates. Medicine, Conflict and Survival, 29(1), 7–25.CrossRefGoogle Scholar
  14. Favas, P. J. C., Pratas, J., Mitra, S., Sarkar, S. K., & Venkatachalam, P. (2016). Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Science of the Total Environment, 568, 350–368.CrossRefGoogle Scholar
  15. Fetter, S., & von Hippel, F. N. (2000). The hazard posed by depleted uranium munitions. Science & Global Security, 8(2), 125–161.CrossRefGoogle Scholar
  16. Finch, R. J., & Ewing, R. C. (1992). The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190, 133–156.CrossRefGoogle Scholar
  17. Fujiwara, K., Yamana, H., Fujii, T., & Moriyama, H. (2003). Determination of uranium (IV) hydrolysis constants and solubility product of UO2·xH2O. Radiochimica Acta, 91(6), 345–350.CrossRefGoogle Scholar
  18. Gu, B., Yan, H., Zhou, P., Watson, D. B., Park, M., & Istok, J. (2005). Natural humics impact uranium bioreduction and oxidation. Environmental Science & Technology, 39(14), 5268–5275.CrossRefGoogle Scholar
  19. Han, F. X., & Banin, A. (1997). Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. I: incubation under saturated conditions. Water, Air, & Soil Pollution, 95(1), 399–423.Google Scholar
  20. Han, F. X., Kingery, W. L., Hargreaves, J. E., & Walker, T. W. (2007). Effects of land uses on solid-phase distribution of micronutrients in selected vertisols of the Mississippi River Delta. Geoderma, 142(1), 96–103.CrossRefGoogle Scholar
  21. Jagetiya, B., & Sharma, A. (2013). Optimization of chelators to enhance uranium uptake from tailings for phytoremediation. Chemosphere, 91(5), 692–696.CrossRefGoogle Scholar
  22. Jalali, M., & Khanlari, Z. V. (2008). Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma, 143(1), 26–40.CrossRefGoogle Scholar
  23. Kim, K. R., Owens, G., & Kwon, S. L. (2010). Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. Journal of Environmental Sciences, 22(1), 98–105.CrossRefGoogle Scholar
  24. Kowal-Fouchard, A., Drot, R., Simoni, E., & Ehrhardt, J. J. (2004). Use of spectroscopic techniques for uranium (VI)/montmorillonite interaction modeling. Environmental Science & Technology, 38(5), 1399–1407.CrossRefGoogle Scholar
  25. Larson, S. L., Ballard, J., Medina, V., Thompson, M., O’Connor, G., Griggs, C., & Nestler, C. (2009). Separation of depleted uranium from soil. ERDC/EL TR-09-1, U. S. Army Engineer Research and Development Center, Vicksburg, MS.Google Scholar
  26. Laurette, J., Larue, C., Mariet, C., Brisset, F., Khodja, H., Bourguignon, J., & Carrière, M. (2012a). Influence of uranium speciation on its accumulation and translocation in three plant species: oilseed rape, sunflower and wheat. Environmental and Experimental Botany, 77, 96–107.CrossRefGoogle Scholar
  27. Laurette, J., Larue, C., Llorens, I., Jaillard, D., Jouneau, P. H., Bourguignon, J., & Carrière, M. (2012b). Speciation of uranium in plants upon root accumulation and root-to-shoot translocation: a XAS and TEM study. Environmental and Experimental Botany, 77, 87–95.CrossRefGoogle Scholar
  28. Liu, B., Peng, T., Sun, H., & Yue, H. (2017). Release behavior of uranium in uranium mill tailings under environmental conditions. Journal of Environmental Radioactivity, 171, 160–168.CrossRefGoogle Scholar
  29. Lu, A., Zhang, S., & Shan, X. Q. (2005). Time effect on the fractionation of heavy metals in soils. Geoderma, 125(3), 225–234.CrossRefGoogle Scholar
  30. McDaniel, W. (1992). Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues. In C. K. Smoley (Ed.), Methods for the determination of metals in environmental samples (pp. 25–32). Boca Ranton: CRC Press Inc.Google Scholar
  31. Mench, M., & Martin, E. (1991). Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant and Soil, 132(2), 187–196.CrossRefGoogle Scholar
  32. Mench, M., Morel, J. L., Guckert, A., & Guillet, B. (1988). Metal binding with root exudates of low molecular weight. Journal of Soil Science, 39(4), 521–527.CrossRefGoogle Scholar
  33. Meng, F. D., Yuan, G. D., Larson, S. L., Ballard, J. H., Waggoner, C. A., Arslan, Z., & Han, F. X. (2017). Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite. Journal of Environmental Radioactivity, 180(1–8).CrossRefGoogle Scholar
  34. Qi, F., Zha, Z., Du, L., Feng, X., Wang, D., Zhang, D., Fang, Z., Ma, L., Jin, Y., & Xia, C. (2014). Impact of mixed low-molecular-weight organic acids on uranium accumulation and distribution in a variant of mustard (Brassica juncea var. tumida). Journal of Radioanalytical and Nuclear Chemistry, 302(1), 149–159.CrossRefGoogle Scholar
  35. Radenković, M. B., Cupać, S. A., Joksić, J. D., & Todorović, D. J. (2008). Depleted uranium mobility and fractionation in contaminated soil (southern Serbia). Environmental Science and Pollution Research, 15(1), 61–67.CrossRefGoogle Scholar
  36. Roy, M., & McDonald, L. M. (2015). Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degradation & Development, 26(8), 785–792.CrossRefGoogle Scholar
  37. Rankin, D. W. (2008). CRC handbook of chemistry and physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, pp. 14–17.Google Scholar
  38. Sani, R. K., Peyton, B. M., Dohnalkova, A., & Amonette, J. E. (2005). Reoxidation of reduced uranium with iron (III)(hydr) oxides under sulfate-reducing conditions. Environmental Science & Technology, 39(7), 2059–2066.CrossRefGoogle Scholar
  39. Sharma, S., Singh, B., Thulasidas, S. K., Kulkarni, M. J., Natarajan, V., & Manchanda, V. K. (2016). Evaluation of terrestrial plants extracts for uranium sorption and characterization of potent phytoconstituents. International Journal of Phytoremediation, 18(1), 10–15.CrossRefGoogle Scholar
  40. Sheppard, S. C., Sheppard, M. I., Gallerand, M. O., & Sanipelli, B. (2005). Derivation of ecotoxicity thresholds for uranium. Journal of Environmental Radioactivity, 79(1), 55–83.CrossRefGoogle Scholar
  41. Shuman, L. M. (1982). Separating soil iron- and manganese-oxide fractions for microelement analysis. Soil Science Society of America Journal, 46(5), 1099–1102.CrossRefGoogle Scholar
  42. Smith, S. C., Douglas, M., Moore, D. A., Kukkadapu, R. K., & Arey, B. W. (2009). Uranium extraction from laboratory-synthesized, uranium-doped hydrous ferric oxides. Environmental Science & Technology, 43(7), 2341–2347.CrossRefGoogle Scholar
  43. Tuovinen, H., Vesterbacka, D., Pohjolainen, E., Read, D., Solatie, D., & Lehto, J. (2015). A comparison of analytical methods for determining uranium and thorium in ores and mill tailings. Journal of Geochemical Exploration, 148, 174–180.CrossRefGoogle Scholar
  44. Vandenhove, H., Van Hees, M., Wouters, K., & Wannijn, J. (2007). Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environmental Pollution, 145(2), 587–595.CrossRefGoogle Scholar
  45. Veeh, H. H., Calvert, S. E., & Price, & N. B. (1974). Accumulation of uranium in sediments and phosphorites on the South West African shelf. Marine Chemistry, 2(3), 189–202.CrossRefGoogle Scholar
  46. Véra-Tome, F., Rodriguez, P. B., & Lozano, J. C. (2008). Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Science of the Total Environment, 393(2), 351–357.CrossRefGoogle Scholar
  47. Véra-Tome, F., Rodriguez, P. B., & Lozano, J. C. (2009). The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere, 74(2), 293–300.CrossRefGoogle Scholar
  48. Wei, M., Liao, J. L., Liu, N., Zhang, D., Kang, H. J., Yang, Y. Y., Yang, Y., & Jin, J. N. (2007). Interaction between uranium and humic acid (I): adsorption behaviors of U (VI) in soil humic acids. Nuclear Science and Techniques, 18(5), 287–293.CrossRefGoogle Scholar
  49. Weyer, S., Anbar, A. D., Gerdes, A., Gordon, G. W., Algeo, T. J., & Boyle, E. A. (2008). Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2), 345–359.CrossRefGoogle Scholar
  50. Winde, F., & van der Walt, I. J. (2004). The significance of groundwater–stream interactions and fluctuating stream chemistry on waterborne uranium contamination of streams—a case study from a gold mining site in South Africa. Journal of Hydrology, 287(1), 178–196.CrossRefGoogle Scholar
  51. Xian, X. (1989). Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant and Soil, 113(2), 257–264.CrossRefGoogle Scholar
  52. Yang, J., & Pan, X. (2013). Root exudates from sunflower (Helianthus annuus L.) show a strong adsorption ability toward Cd(II). Journal of Plant Interactions, 8(3), 263–270.CrossRefGoogle Scholar
  53. Zielinski, R. A., & Meier, A. L. (1988). The association of uranium with organic matter in Holocene peat: an experimental leaching study. Applied Geochemistry, 3(6), 631–643.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fande Meng
    • 1
    • 2
  • Decheng Jin
    • 2
    • 3
  • Kai Guo
    • 2
  • Steven L. Larson
    • 4
  • John H. Ballard
    • 4
  • Liangmei Chen
    • 2
    • 5
  • Zikri Arslan
    • 2
  • Guodong Yuan
    • 6
  • Jeremy R. White
    • 2
  • Lixiang Zhou
    • 3
  • Youhua Ma
    • 5
  • Charles A. Waggoner
    • 7
  • Fengxiang X. Han
    • 2
  1. 1.College of Resource and EnvironmentAnhui Science and Technology UniversityHuainanChina
  2. 2.Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA
  3. 3.Department of Environmental Engineering, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
  4. 4.U.S. Army Engineer Research and Development CenterVicksburgUSA
  5. 5.School of Resources and EnvironmentAnhui Agricultural UniversityHefeiChina
  6. 6.School of Environmental and Chemical EngineeringZhaoqing UniversityZhaoqingChina
  7. 7.Institute for Clean Energy TechnologyMississippi State UniversityStarkvilleUSA

Personalised recommendations