Advertisement

Water, Air, & Soil Pollution

, 229:342 | Cite as

Maximum Influent Salinity Affects the Diversity of Mineral-Precipitation-Mediating Bacterial Communities in Membrane Biofilm of Hybrid Moving Bed Biofilm Reactor-Membrane Bioreactor

  • Alejandro Rodriguez-SanchezEmail author
  • Barbara Muñoz-Palazon
  • Miguel Hurtado-Martinez
  • Maria Angustias Rivadeneyra
  • Jose Manuel Poyatos
  • Jesus Gonzalez-Lopez
Article
  • 81 Downloads

Abstract

Two hybrid moving bed biofilm reactor-membrane bioreactors were used for the treatment of variable-salinity influent wastewater with maximums of 4.5 and 8.5 mS cm−1 electric conductivity. Operational conditions of the bioreactors were 6 h hydraulic retention time and 2500 mg L−1 total solids. The membrane operated in a cycle of 9 min draw-1 min backwash and at 23.6 L h−1 m−2 flux rate. Membrane biofilm was collected from both systems and cultured in growth media for precipitation of carbonate and phosphate minerals, yielding only Bacillus stratosphericus for the 4.5 mS cm−1 scenario and Bacillus stratosphericus, Bacillus toyonensis, Microbacterium esteraromaticum, Comamonas testosteroni, and Janibacter meloni for the 8.5 mS cm−1 scenario. Scanning electron microscopy and X-ray analysis showed similarities in morphology and composition for the carbonate crystals from both salinity conditions and differences for the phosphate minerals. Study of the bacterial community of membrane biofilm and mixed liquor showed close similarities between them for the same salinity conditions, with both dominated by genera Rhodanobacter, Chujaibacter, and Thermomonas.

Keywords

Biofouling Biomineralization Calcium carbonate MBBR-MBR Metagenomics Phosphate 

Notes

Acknowledgments

We would like to acknowledge the support given by the Institute of Water Research, the Department of Civil Engineering and the Faculty of Pharmacy of the University of Granada.

Funding information

Funding was given by the Ministerio de Economia, Industria y Competitividad of the Government of Spain by the project with reference CTM2013-48154-P and the grant with reference BES-2014-067852.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supplementary material

11270_2018_4020_MOESM1_ESM.docx (130 kb)
ESM 1 (DOCX 129 kb)

References

  1. Ali, M., Chai, L. Y., Min, X. B., Tang, C. J., Afrin, S., Liao, Q., et al. (2016). Performance and characteristics of a nitritation air-lift reactor under long-term HRT shortening. International Biodeterioration and Biodegradation, 111, 45–53.  https://doi.org/10.1016/j.ibiod.2016.04.003.CrossRefGoogle Scholar
  2. Bassin, J. P., Kleerebezem, R., Muyzer, G., Rosado, A. S., Van Loosdrecht, M. C. M., & Dezotti, M. (2012). Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Applied Microbiology and Biotechnology, 93(3), 1281–1294.  https://doi.org/10.1007/s00253-011-3428-7.CrossRefGoogle Scholar
  3. Bian, G., Gloor, G. B., Gong, A., Jia, C., Zhang, W., Hu, J., et al. (2017). The gut microbiota of healthy aged Chinese is similar to that of the healthy young. mSphere, 2(5), e00327–e00317.  https://doi.org/10.1128/mSphere.00327-17.CrossRefGoogle Scholar
  4. Castillo-Carvajal, L. C., Sanz-Martin, J. L., & Barragan-Huerta, B. E. (2014). Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environmental Science and Pollution Research, 21(16), 9578–9588.  https://doi.org/10.1007/s11356-014-3036-z.CrossRefGoogle Scholar
  5. Chander, A. M., Kochhar, R., Dhawan, D. K., Bhadada, S. K., & Mayilraj, S. (2018). Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient. Gut Pathogens, 10(1), 1–8.  https://doi.org/10.1186/s13099-018-0229-x.CrossRefGoogle Scholar
  6. Cortes-Lorenzo, C., Rodriguez-Diaz, M., Lopez-Lopez, C., Sanchez-Peinado, M., Rodelas, B., & Gonzalez-Lopez, J. (2012). Effect of salinity on enzymatic activities in a submerged fixed bed biofilm reactor for municipal sewage treatment. Bioresource Technology, 121, 312–319.  https://doi.org/10.1016/j.biortech.2012.06.083.CrossRefGoogle Scholar
  7. Cortés-Lorenzo, C., González-Martínez, A., Smidt, H., González-López, J., & Rodelas, B. (2016). Influence of salinity on fungal communities in a submerged fixed bed bioreactor for wastewater treatment. Chemical Engineering Journal, 285, 562–572.  https://doi.org/10.1016/j.cej.2015.10.009.CrossRefGoogle Scholar
  8. Di Trapani, D., Di Bella, G., Mannina, G., Torregrossa, M., & Viviani, G. (2014). Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation. Bioresource Technology, 162, 60–69.  https://doi.org/10.1016/j.biortech.2014.03.126.CrossRefGoogle Scholar
  9. Elsayed, S., & Zhang, K. (2005). Bacteremia caused by Janibacter melonis. Journal of Clinical Microbiology, 43(7), 3537–3539.  https://doi.org/10.1128/JCM.43.7.3537-3539.2005.CrossRefGoogle Scholar
  10. Gao, D. W., Wen, Z. D., Li, B., & Liang, H. (2014). Microbial community structure characteristics associated membrane fouling in A/O-MBR system. Bioresource Technology, 154, 87–93.  https://doi.org/10.1016/j.biortech.2013.11.051.CrossRefGoogle Scholar
  11. Gonzalez-Martinez, A., Leyva-Díaz, J. C., Rodriguez-Sanchez, A., Muñoz-Palazon, B., Rivadeneyra, A., Poyatos, J. M., et al. (2015). Isolation and metagenomic characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor-membrane bioreactor. Biofouling, 31(4), 333–348.  https://doi.org/10.1080/08927014.2015.1040006.CrossRefGoogle Scholar
  12. Gonzalez-Martinez, A., Rodriguez-Sanchez, A., Lotti, T., Garcia-Ruiz, M. J., Osorio, F., Gonzalez-Lopez, J., & van Loosdrecth, M. C. M. (2016). Comparison of bacterial communities of conventional and A-stage activated sludge systems. Scientific Reports, 6, 18786.  https://doi.org/10.1038/srep18786.CrossRefGoogle Scholar
  13. Gonzalez-Martinez, A., Rodriguez-Sanchez, A., Rivadeneyra, M. A., Rivadeneyra, A., Martin-Ramos, D., Vahala, R., & Gonzalez-Lopez, J. (2017). 16S rRNA gene-based characterization of bacteria potentially associated with phosphate and carbonate precipitation from a granular autotrophic nitrogen removal bioreactor. Applied Microbiology and Biotechnology, 101(2), 817–829.  https://doi.org/10.1007/s00253-016-7914-9.CrossRefGoogle Scholar
  14. Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J., & Weitz, J. S. (2013). Robust estimation of microbial diversity in theory and in practice. ISME Journal, 7(6), 1092–1101.  https://doi.org/10.1038/ismej.2013.10.CrossRefGoogle Scholar
  15. Holmes, I., Harris, K., & Quince, C. (2012). Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One, 7(2).  https://doi.org/10.1371/journal.pone.0030126.CrossRefGoogle Scholar
  16. Huse, S. M., Welch, D. M., Morrison, H. G., & Sogin, M. L. (2010). Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology, 12, 1889–1898.  https://doi.org/10.1111/j.1462-2920.2010.02193.x.CrossRefGoogle Scholar
  17. Jiménez, G., Blanch, A. R., Tamames, J., & Rosselló-mora, R. (2013a). Complete genome sequence of Bacillus toyonensis BCT-7112 T , the active ingredient of the feed additive preparation toyocerin. Genome Announcements ASM, 1(6), e01080–e01013.  https://doi.org/10.1128/genomeA.01080-13.Copyright.CrossRefGoogle Scholar
  18. Jiménez, G., Urdiain, M., Cifuentes, A., López-López, A., Blanch, A. R., Tamames, J., et al. (2013b). Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Systematic and Applied Microbiology, 36(6), 383–391.  https://doi.org/10.1016/j.syapm.2013.04.008.CrossRefGoogle Scholar
  19. Kim, S.-J., Ahn, J.-H., Weon, H.-Y., Hong, S.-B., Seok, S.-J., Kim, J.-S., & Kwon, S.-W. (2015). Chujaibacter soli gen. nov., sp. nov., isolated from soil. Journal of Microbiology, 53(9), 592–597.  https://doi.org/10.1007/s12275-015-5136-y.CrossRefGoogle Scholar
  20. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7 : molecular evolutionary genetics analysis version 7 . 0 for bigger datasets. Molecular Ecology and Evolution, 33(7), 1870–1874.  https://doi.org/10.1093/molbev/msw054.CrossRefGoogle Scholar
  21. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.  https://doi.org/10.1093/bioinformatics/btm404.CrossRefGoogle Scholar
  22. Leyva-Diaz, J. C., González-Martinez, A., Gonzalez-Lopez, J., Muñio, M. M., & Poyatos, J. M. (2015). Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor—membrane bioreactor for wastewater treatment. Chemical Engineering Journal, 259, 692–702.  https://doi.org/10.1016/j.cej.2014.07.136.CrossRefGoogle Scholar
  23. Li, M. Y., Zhang, J., Lu, P., Xu, J. L., & Li, S. P. (2009). Evaluation of biological characteristics of bacteria contributing to biofilm formation. Pedosphere, 19(5), 554–561.  https://doi.org/10.1016/S1002-0160(09)60149-1.CrossRefGoogle Scholar
  24. Rivadeneyra, A., Gonzalez-Martinez, A., Gonzalez-Lopez, J., Martin-Ramos, D., Martinez-Toledo, M. V., & Rivadeneyra, M. A. (2014). Precipitation of phosphate minerals by microorganisms isolated from a fixed-biofilm reactor used for the treatment of domestic wastewater. International Journal of Environmental Research and Public Health, 11(4), 3689–3704.  https://doi.org/10.3390/ijerph110403689.CrossRefGoogle Scholar
  25. Rivadeneyra, A., Gonzalez-Martinez, A., Portela, G. R., Martin-Ramos, D. J., Gonzalez-Lopez, J., & Rivadeneyra, M. A. (2017). Biomineralisation of carbonate and sulphate by the halophilic bacterium Halomonas maura at different manganese concentrations. Extremophiles, 21(6), 1049–1056.  https://doi.org/10.1007/s00792-017-0965-8.CrossRefGoogle Scholar
  26. Rodriguez-Sanchez, A., Leyva-Diaz, J. C., Gonzalez-Martinez, A., & Poyatos, J. M. (2017a). Performance and kinetics of membrane and hybrid moving bed biofilm-membrane bioreactors treating salinity wastewater. AICHE Journal, 63(8), 3329–3342.  https://doi.org/10.1002/aic.15694.CrossRefGoogle Scholar
  27. Rodriguez-Sanchez, A., Leyva-Diaz, J. C., Gonzalez-Martinez, A., & Poyatos, J. M. (2017b). Linkage of microbial kinetics and bacterial community structure of MBR and hybrid MBBR–MBR systems to treat salinity-amended urban wastewater. Biotechnology Progress, 33(6).  https://doi.org/10.1002/btpr.2513.CrossRefGoogle Scholar
  28. Rodriguez-Sanchez, A., Leyva-Diaz, J. C., Gonzalez-Lopez, J., & Poyatos, J. M. (2018a). Membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor for the treatment of variable salinity wastewater: influence of biomass concentration and hydraulic retention time. Chemical Engineering Journal, 336.  https://doi.org/10.1016/j.cej.2017.10.118.CrossRefGoogle Scholar
  29. Rodriguez-Sanchez, A., Leyva-Diaz, J. C., Poyatos, J. M., & Gonzalez-Lopez, J. (2018b). Influent salinity conditions affect the bacterial communities of biofouling in hybrid MBBR-MBR systems. Journal of Water Process Engineering.  https://doi.org/10.1016/j.jwpe.2018.07.001.
  30. Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584.  https://doi.org/10.7717/peerj.2584.CrossRefGoogle Scholar
  31. Schloss, P. D. (2016). Application of a database-independent approach to assess the quality of. mSystems, 1(2), 2–5.  https://doi.org/10.1128/mSystems.00027-16.Copyright.CrossRefGoogle Scholar
  32. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.  https://doi.org/10.1128/AEM.01541-09.CrossRefGoogle Scholar
  33. Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S. N., Dutt, C. B. S., Wainwright, M., et al. (2006). Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. International Journal of Systematic and Evolutionary Microbiology, 56(7), 1465–1473.  https://doi.org/10.1099/ijs.0.64029-0.CrossRefGoogle Scholar
  34. Silva-Castro, G. A., Uad, I., Gonzalez-Martinez, A., Rivadeneyra, A., Gonzalez-Lopez, J., & Rivadeneyra, M. A. (2015). Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. BioMed Research International, 2015.  https://doi.org/10.1155/2015/816102.CrossRefGoogle Scholar
  35. Takeuchi, M., & Hatano, K. (1998). Union of the genera Microbacterium Orla- Jensen and Aureobacterium Collins et a/. in a redefined genus Microbacterium. International Journal of Systematic Bacteriology, 48, 739–747.CrossRefGoogle Scholar
  36. Uad, I., Gonzalez-Lopez, J., Silva-Castro, A. G., Vílchez, J. I., Gonzalez-Martinez, A., Martin-Ramos, D., et al. (2014). Precipitation of carbonates crystals by bacteria isolated from a submerged fixed-film bioreactor used for the treatment of urban wastewater. International Journal of Environmental Research, 8(2), 435–446.Google Scholar
  37. Unno, T. (2015). Bioinformatic suggestions on MiSeq-based microbial community analysis. 25(6), 765–770.Google Scholar
  38. Vinothkumar, R., Bharti, V. S., Vennila, A., Kumar, H. S., & Pandey, P. K. (2016). Isolation and characterization of heterotrophic nitrifying—denitrifying bacteria from shrimp farming ponds. Ecology, Environment and Conservation, 22(1), 275–279.Google Scholar
  39. Wang, L., Zheng, S., Wang, D., Wang, L., & Wang, G. (2014). Thermomonas carbonis sp. nov., isolated from the soil of a coal mine. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 11), 3631–3635.  https://doi.org/10.1099/ijs.0.063800-0.CrossRefGoogle Scholar
  40. Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., et al. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1), 1–18.  https://doi.org/10.1186/s40168-017-0237-y.CrossRefGoogle Scholar
  41. Westcott, S. L., & Schloss, P. D. (2015). De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ, 3, e1487.  https://doi.org/10.7717/peerj.1487.CrossRefGoogle Scholar
  42. Xu, G., Li, D., Jiao, B., Li, D., Yin, Y., Lun, L., et al. (2017). Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1. Electronic Journal of Biotechnology, 25, 21–27.  https://doi.org/10.1016/j.ejbt.2016.10.008.CrossRefGoogle Scholar
  43. Yokota, a., Takeuchi, M., Sakane, T., & Weiss, N. (1993). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. International Journal of Systematic Bacteriology, 43(3), 555–564.  https://doi.org/10.1099/00207713-43-3-555.CrossRefGoogle Scholar
  44. Yoon, J. H., Lee, H. B., Yeo, S. H., & Choi, J. E. (2004). Janibacter melonis sp. nov., isolated from abnormally spoiled oriental melon in Korea. International Journal of Systematic and Evolutionary Microbiology, 54(6), 1975–1980.  https://doi.org/10.1099/ijs.0.63167-0.CrossRefGoogle Scholar
  45. Zhang, D., Huang, X., Li, W., Qin, W., & Wang, P. (2016). Characteristics of heterotrophic nitrifying bacterium strain SFA13 isolated from the Songhua River. Annals of Microbiology, 66(1), 271–278.  https://doi.org/10.1007/s13213-015-1105-2.CrossRefGoogle Scholar
  46. Zhu, D., Xie, C., Huang, Y., Sun, J., & Zhang, W. (2014). Description of Comamonas serinivorans sp. nov., isolated from wheat straw compost. International Journal of Systematic and Evolutionary Microbiology, 64(2014), 4141–4146.  https://doi.org/10.1099/ijs.0.06668.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alejandro Rodriguez-Sanchez
    • 1
    • 2
    Email author
  • Barbara Muñoz-Palazon
    • 1
  • Miguel Hurtado-Martinez
    • 1
  • Maria Angustias Rivadeneyra
    • 1
    • 3
  • Jose Manuel Poyatos
    • 1
    • 2
  • Jesus Gonzalez-Lopez
    • 1
    • 3
  1. 1.Institute of Water ResearchUniversity of GranadaGranadaSpain
  2. 2.Department of Civil EngineeringUniversity of GranadaGranadaSpain
  3. 3.Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain

Personalised recommendations