Water, Air, & Soil Pollution

, 229:351 | Cite as

Formation of Nitrogen Oxides (N2O, NO, and NO2) in Typical Plasma and Plasma-Catalytic Processes for Air Pollution Control

  • Xing Fan
  • Sijing Kang
  • Jian Li
  • Tianle Zhu


Effects of discharge power, O2 content, reaction temperature, catalyst introduction, and presence of NO and dichloromethane (DCM) on the formation of nitrogen oxides (N2O, NO, and NO2) by discharge in N2-O2 mixture have been systematically investigated using a dielectric barrier discharge (DBD) reactor. Results show that discharge in N2-O2 mixture always produces several to hundreds ppm of nitrogen oxides as byproducts. The production of nitrogen oxides increases with the increase of O2 content and the introduction of Al2O3 or RuO2/Al2O3 catalyst. N2O production first increases and then decreases/levels off with increasing discharge power at room temperature, but increases monotonously at 300 °C. NO and NO2 are produced only at relatively high discharge power at room temperature but are produced at all discharge power tested at 300 °C. Increasing the reaction temperature from room temperature to 300 °C significantly reduces the production of N2O but increases that of NO and NO2. The presence of hundreds ppm NO in N2-O2 mixture significantly reduces the production of N2O due to the effective quenching of the vital species for N2O formation (N2(A3Σu+)) by NO. The presence of hundreds ppm DCM, however, hardly affects the production of nitrogen oxides, demonstrating the precedence of nitrogen oxide production over DCM decomposition in N2-O2 plasma.


Nitrogen oxide formation Dielectric barrier discharge plasma Al2O3 catalyst NO oxidation Dichloromethane removal 


Funding Information

This work was supported by the National Natural Science Foundation of China (grant numbers 21707004, 51638001) and the Natural Science Foundation of Beijing Municipality (grant number 8152011).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11270_2018_4011_MOESM1_ESM.docx (758 kb)
ESM 1 (DOCX 757 kb)


  1. Allah, Z. A., Whitehead, J. C., & Martin, P. (2014). Remediation of dichloromethane (CH2Cl2) using non-thermal, atmospheric pressure plasma generated in a packed-bed reactor. Environmental Science & Technology, 48(1), 558–565.CrossRefGoogle Scholar
  2. Bai, Y. H., Chen, J. R., Li, X. Y., & Zhang, C. H. (2009). Non-thermal plasmas chemistry as a tool for environmental pollutants abatement. Reviews of Environmental Contamination & Toxicology, 201, 117–136.Google Scholar
  3. Chang, J. S. (2008). Physics and chemistry of plasma pollution control technology. Plasma Sources Science & Technology, 17(4), 045004.CrossRefGoogle Scholar
  4. Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43(7), 2216–2227.CrossRefGoogle Scholar
  5. Durme, J. V., Dewulf, J., Leys, C., & Langenhove, H. V. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Applied Catalysis B: Environmental, 78(3–4), 324–333.CrossRefGoogle Scholar
  6. Fan, X., Kang, S. J., Li, J., & Zhu, T. L. (2018). Conversion of dilute nitrous oxide (N2O) in N2 and N2-O2 mixtures by plasma and plasma-catalytic processes. RSC Advances, 8, 26998–27007.CrossRefGoogle Scholar
  7. Fan, X., Zhu, T. L., Wang, M. Y., & Li, X. M. (2009). Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere, 75(10), 1301–1306.CrossRefGoogle Scholar
  8. Fan, X., Zhu, T. L., Sun, Y. F., & Yan, X. (2011). The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. Journal of Hazardous Materials, 196, 380–385.CrossRefGoogle Scholar
  9. Fan, X., Zhu, T. L., Wan, Y. J., & Yan, X. (2010). Effects of humidity on the plasma-catalytic removal of low-concentration BTX in air. Journal of Hazardous Materials, 180(1), 616–621.CrossRefGoogle Scholar
  10. Fitzsimmons, C., Ismail, F., Whitehead, J. C., & Wilman, J. J. (2000). The chemistry of dichloromethane destruction in atmospheric-pressure gas streams by a dielectric packed-bed plasma reactor. The Journal of Physical Chemistry A, 104(25), 6032–6038.CrossRefGoogle Scholar
  11. Futamura, S., Zhang, A., Einaga, H., & Kabashima, H. (2002). Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 72(3–4), 259–265.CrossRefGoogle Scholar
  12. Guan, B., Lin, H., Cheng, Q., & Huang, Z. (2011). Removal of NOx with selective catalytic reduction based on nonthermal plasma preoxidation. Industrial & Engineering Chemistry Research, 50(9), 5401–5413.CrossRefGoogle Scholar
  13. Herron, J. T., & Green, D. S. (2001). Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chemistry and Plasma Processing, 21(3), 459–481.CrossRefGoogle Scholar
  14. Jiang, N., Guo, L., Qiu, C., Zhang, Y., Shang, K., Lu, N., Li, J., & Wu, Y. (2018). Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes. Chemical Engineering Journal, 350, 12–19.CrossRefGoogle Scholar
  15. Jiang, N., Qiu, C., Guo, L., Shang, K., Lu, N., Li, J., & Wu, Y. (2017). Post plasma-catalysis of low concentration VOC over alumina-supported silver catalysts in a surface/packed-bed hybrid discharge reactor. Water, Air, & Soil Pollution, 228(3), 113.CrossRefGoogle Scholar
  16. Jo, J., Trinh, Q. H., Kim, S. H., & Mok, Y. S. (2018). Plasma-catalytic decomposition of nitrous oxide over γ-alumina-supported metal oxides. Catalysis Today, 310, 42–48.CrossRefGoogle Scholar
  17. Jõgi, I., Erme, K., Levoll, E., Raud, J., & Stamate, E. (2018). Plasma and catalyst for the oxidation of NOx. Plasma Sources Science & Technology, 27(3), 035001.CrossRefGoogle Scholar
  18. Kim, H. H. (2004). Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Processes & Polymers, 1(2), 91–110.CrossRefGoogle Scholar
  19. Kim, H. H., Oh, S. M., Ogata, A., & Futamura, S. (2005). Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 56(3), 213–220.CrossRefGoogle Scholar
  20. Kossyi, I. A., Kostinsky, A. Y., Matveyev, A. A., & Silakov, V. P. (1992). Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science & Technology, 1(3), 207–220.CrossRefGoogle Scholar
  21. Krawczyk, K. (2009). Conversion of nitrous oxide by positive pulsed corona discharge. IEEE Transactions on Plasma Science, 37(6), 884–889.CrossRefGoogle Scholar
  22. Lee, H. M., & Chang, M. B. (1998). Destruction of VOCs via silent discharge plasmas. Chemical Engineering & Technology, 21(12), 987–989.CrossRefGoogle Scholar
  23. Mok, Y. S., & Huh, Y. J. (2005). Simultaneous removal of nitrogen oxides and particulate matters from diesel engine exhaust using dielectric barrier discharge and catalysis hybrid system. Plasma Chemistry and Plasma Processing, 25(6), 625–639.CrossRefGoogle Scholar
  24. Oda, T. (2003). Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. Journal of Electrostatics, 57(3–4), 293–311.CrossRefGoogle Scholar
  25. Pekridis, G., Athanasiou, C., Konsolakis, M., Yentekakis, I. V., & Marnellos, G. E. (2009). N2O abatement over γ-Al2O3 supported catalysts: effect of reducing agent and active phase nature. Topics in Catalysis, 52(13), 1880–1887.CrossRefGoogle Scholar
  26. Schiavon, M., Torretta, V., Casazza, A., & Ragazzi, M. (2017). Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: a review. Water, Air, & Soil Pollution, 228(10), 388.CrossRefGoogle Scholar
  27. Song, Y. H., Kim, S. J., Choi, K. I., & Yamamoto, T. (2002). Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics, 55, 189–201.CrossRefGoogle Scholar
  28. Tang, X., Wang, J., Yi, H., Zhao, S., Gao, F., Huang, Y., Zhang, R., & Yang, Z. (2017). N2O formation characteristics in dielectric barrier discharge reactor for environmental application: effect of operating parameters. Energy & Fuels, 31(12), 13901–13908.CrossRefGoogle Scholar
  29. Trinh, H. Q., & Mok, Y. S. (2014). Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts. Chemical Engineering Journal, 251, 199–206.CrossRefGoogle Scholar
  30. Trinh, Q., Kim, S. H., & Mok, Y. S. (2016). Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption-plasma decomposition process. Chemical Engineering Journal, 302, 12–22.CrossRefGoogle Scholar
  31. Urashima, K., & Chang, J. S. (2000). Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Transactions on Dielectrics & Electrical Insulation, 7(5), 602–614.CrossRefGoogle Scholar
  32. Wan, Y. J., Fan, X., & Zhu, T. L. (2011). Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chemical Engineering Journal, 171(1), 314–319.CrossRefGoogle Scholar
  33. Wang, P., & Chen, J. (2009). Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge. Journal of Physics D: Applied Physics, 42(3), 035202.CrossRefGoogle Scholar
  34. Yamamoto, T. (1997). VOC decomposition by nonthermal plasma processing—a new approach. Journal of Electrostatics, 42(1–2), 227–238.CrossRefGoogle Scholar
  35. Zhang, Y., Tang, X., Yi, H., Yu, Q., Wang, J., Gao, F., Gao, Y., Li, D., & Cao, Y. (2016). The byproduct generation analysis of the NOx conversion process in dielectric barrier discharge plasma. RSC Advances, 6(68), 63946–63953.CrossRefGoogle Scholar
  36. Zhao, G. B., Garikipati, S., Hu, X. D., Argyle, M. D., & Radosz, M. (2005). Effect of oxygen on nonthermal plasma reactions of nitrogen oxides in nitrogen. AICHE Journal, 51(6), 1800–1812.CrossRefGoogle Scholar
  37. Zhao, G. B., Hu, X. D., Argyle, M. D., & Radosz, M. (2004). N atom radicals and N2(A3Σu +) found to be responsible for nitrogen oxides conversion in nonthermal nitrogen plasma. Industrial & Engineering Chemistry Research, 43(17), 5077–5088.CrossRefGoogle Scholar
  38. Zhu, X., Gao, X., Zheng, C., Wang, Z., Ni, M., & Tu, X. (2014). Plasma-catalytic removal of a low concentration of acetone in humid conditions. RSC Advances, 4(71), 37796–37805.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingChina
  2. 2.School of Space and EnvironmentBeihang UniversityBeijingChina

Personalised recommendations