Advertisement

Water, Air, & Soil Pollution

, 229:374 | Cite as

Permeability and Retention to Water and Leachate of a Compacted Soil Used as Liner

  • Mariane Alves de Godoy LemeEmail author
  • Miriam Gonçalves Miguel
Article

Abstract

In many developing countries, a landfill remains one of the most extensively employed solid waste disposal solutions. Although a landfill is a well-designed engineering system, the base lining of a landfill may perform poorly and allow the leachate to reach the underlying soil layers and groundwater. Leachates contain a variety of toxic and hazardous contaminants, which are attenuated in the soil by various processes that slow or transform them. Thus, the objective of this research was to study the water and leachate permeability and retention of the liner soil in a landfill experimental cell by subjecting it to geotechnical, chemical-mineralogical, and physicochemical characterizations, water and leachate permeability tests, and mercury intrusion porosimetry (MIP). In addition, the water and leachate retention curves were determined and analyzed using RETention Curve (RETC) software to obtain the unsaturated permeability curves. The leachate in the soil decreased the suction considering the moisture content of the compacted soil in the field, which consequently increased the leachate permeability of the mineral liner. For the same suction value, in the drying pathways, the soil retained a greater amount of distilled water than leachate. In the wetting pathways, the opposite occurred. Microorganisms were detected in the soil during the filter paper test. The permeability coefficients of the unsaturated soil were directly proportional to the gravimetric moisture content for the water and the leachate, which demonstrated that the soil presents lower unsaturated permeability coefficients for water than for leachate for the same water content.

Keywords

Compacted clay liner Leachate Soil retention curve Coefficient of unsaturated permeability 

Notes

List of Symbols, Abbreviations, and Acronyms

α - Curve adjustment parameter (van Genuchten's model 1980)

Al2O3 - Aluminum oxide

BOD - Biochemical oxygen demand

CaCO3 - Calcium carbonate

CAPES - Brazilian Coordination for the Improvement of Higher Education Personnel

CEC - Cation exchange capacity

CL - Clay of low compressibility

COD - Chemical oxygen demand

D - Drying pathway

E.d. - Empirical data

FAPESP - Support Foundation for Research in the State of São Paulo

Fe2O3 - Ferric oxide

HAc - Acetic acid

μ - Micro (prefix)

m - Adjustment parameter related to curve asymmetry (van Genuchten's model 1980)

MIP - Mercury intrusion porosimetry

MSW - Municipal solid waste

n - Adjustment parameter related to uniform pore distribution (van Genuchten’s model 1980)

N-NH - Ammonia nitrogen

O2 - Oxygen

pH - Potential of hydrogen

ψ - Suction

PZC - Point of zero charge

RETC - RETention curve software

S - Specimen

SiO2 - Silicon dioxide

SLRC - Soil leachate retention curve

SW(L)RC - Soil water and leachate retention curves

SWRC - Soil water retention curve

TiO2 - Titanium dioxide

USCS - Unified soil classification system

v. G. - van Genuchten fit

w - Gravimetric moisture content

W - Wetting pathway

wr - Residual gravimetric moisture content

ws - Gravimetric moisture content in saturated conditions

Funding Information

The authors thank Support Foundation for Research in the State of São Paulo (FAPESP) for supporting the research (process number 2010/18560-4), Consórcio RENOVA Ambiental, Maccaferri do Brasil Ltda. and the City of Campinas for their support in conducting the research, and the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support (finance code 001).

References

  1. ABRELPE (2014). Panorama de resíduos sólidos urbanos. Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. http://www.abrelpe.org.br/panorama_apresentacao.com Accessed 10 February 2016 (in Portuguese).
  2. Alimi-Ichola, I., & Gaidi, L. (2006). Influence of the unsaturated zone of soil layer on the solute migration. Engineering Geology, 85, 2–8.CrossRefGoogle Scholar
  3. Al-Khafaf, S., & Hanks, R. J. (1974). Evaluation of the filter paper method for estimating soil water potential. Soil Science, 117(4), 194–199.CrossRefGoogle Scholar
  4. APHA, AWWA, & WPCF. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: Americam Public Health Association.Google Scholar
  5. Appel, C., Mab, L. Q., Rhue, D., & Kennelley, E. (2003). Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma, 113, 77–93.CrossRefGoogle Scholar
  6. ASTM D 2487. (2011). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). American Society for Testing and Materials, West Conshohocken.Google Scholar
  7. ASTM D 422-63. (2007). Standard test method for particle-size analysis of soils. West Conshohocken: American Society for Testing and Materials.Google Scholar
  8. ASTM D 4318-10. (2010). Standard test method for liquid limit, plastic limit and plasticity index of soils. West Conshohocken: American Society for Testing and Materials.Google Scholar
  9. ASTM D 5298. (2003). Standard test method for measurement of soil potential (suction) using filter paper. West Conshohocken: American Society for Testing and Materials.Google Scholar
  10. ASTM D 5856-15. (2015). Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. West Conshohocken: American Society for Testing and Materials.Google Scholar
  11. ASTM D 698-12. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3). American Society for Testing and Materials, West Conshohocken, Pa.Google Scholar
  12. ASTM D 854–14. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken: American Society for Testing and Materials.Google Scholar
  13. Badv, K., & Omidi, A. (2007). Effect of synthetic leachate on the hydraulic conductivity of clayey soil in Urmia city landfill site. Iranian Journal of Science and Technology, Transaction B, Engineering, 31(5), 535–545.Google Scholar
  14. Bear, J. (1979). Hydraulics of groundwater. New York: McGraw-Hill.Google Scholar
  15. Benatti, J. C. B., Paixão Filho, J. L., Leme, M. A. G., & Miguel, M. G. (2013). Construction of a large-scale experimental cell to obtain hydro-geomechanical parameters of MSW of the city of Campinas, Brazil, 09/2013, In: XIV International Waste Management and Landfill Symposium, 1, pp. 1–13, Cagliari, Italian.Google Scholar
  16. Bicalho, K. V., Marinho, F. A. M., Fleureau, J-M., Correia, A. G., & Ferreira, S. (2009). Evaluation of filter paper calibrations for indirect determination of soil suctions of an unsaturated compacted silty sand. In: 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2009, Alexandria. 17th International Conference on Soil Mechanics and Geotechnical Engineering. Amsterdam: IOS Press, 1, pp. 777–780.Google Scholar
  17. Bonder, B. H., & Miguel, M. G. (2011a). Soil-water characteristic curves obtained through the wetting paths for a tropical soil profile. In: Fifth International Conference on Unsaturated Soils, 2011, Barcelona. Unsaturated Soils, London: Taylor & Francis Group, 2011, 1, pp. 441–446.Google Scholar
  18. Bonder, B. H., & Miguel, M. G. (2011b). Hysteresis phenomenon of a tropical soil profile observed by means of soil water characteristic curves obtained in laboratory and field. In: 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering and 64th Canadian Geotechnical Conference, 1, Toronto-Canada.Google Scholar
  19. Bulut, R., & Leong, E.-C. (2008). Indirect measurement of suction. Geotechnical and Geological Engineering, 26, 633–644.CrossRefGoogle Scholar
  20. Burckhard, S. R., Pirkl, D., Schaefer, V. R., Kulakow, P., & Leven, B. (2000). A study of soil water-holding properties as affected by TPH contamination. In: 2000 Conference On Hazardous Waste Research, pp. 356–359.Google Scholar
  21. Calle, J. A. C. (2000). Análise de ruptura de talude de um solo não saturado. Master’s degree Dissertation, Escola de Engenharia de São Carlos, Universidade de São Paulo, Brasil (in Portuguese).Google Scholar
  22. Camargo, A. O., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (2009). Métodos de Analise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. Edição revista e atualizada. Campinas: Instituto Agronômico (in Portuguese).Google Scholar
  23. Chandler, R. J., & Gutierrez, C. I. (1986). The filter paper method of suction measurement. Geotechnique, 36(2), 265–268.CrossRefGoogle Scholar
  24. Chandler, R. J., Crilly, M. S., & Montgomery-Smith, G. (1992). A low cost method of assessing clay desiccation for low-rise buildings. Proceedings of Institute of Civil Engineering, 92, 82–89.Google Scholar
  25. Chang, A. C., Page, A. L., & Warneke, J. E. (1983). Soil condition effects of municipal sludge composting. Journal of Environmental Engineering Division, 109(3), 199–210.Google Scholar
  26. Crist, J. T., McCarthy, J. F., Zevi, Y., Baveye, P., Throop, J. A., & Steenhuis, T. S. (2004). Pore-scale visualization of colloid transport and retention in partly saturated porous media. Vadose Zone Journal, 3(2), 444–450.CrossRefGoogle Scholar
  27. Crist, J. T., Zevi, Y., McCarthy, J. F., Throop, J. A., & Steenhuis, T. S. (2005). Transport and retention mechanisms of colloids in partially saturated porous media. Vadose Zone Journal, 4, 184–195.CrossRefGoogle Scholar
  28. Paixão Filho, J. L., & Miguel, M. G. (2017). Long-term characterization of landfill leachate: impacts of the tropical climate on its composition. American Journal of Environmental Sciences, 13(2), 116–127.CrossRefGoogle Scholar
  29. de Lemos, J. L., Bostick, B. C., Renshaw, C. E., Sturup, S., & Feng, X. (2006). Landfill-stimulated iron reduction and arsenic release at the Coakley superfund site (NH). Environmental Science & Technology, 40, 67–73.CrossRefGoogle Scholar
  30. Dias, C. L., Oliveira, M. L. S., Hower, J. C., Taffarel, S. R., Kautzmann, R. M., & Silva, L. F. O. (2014). Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. International Journal of Coal Geology, 122, 50–60.CrossRefGoogle Scholar
  31. Fallah, M., Shabanpor, M., & Ebrahimi, S. (2015a). Evaluation of petroleum impacts on some properties of loamy sand soil with the main focus on hydraulic properties. Environmental Earth Sciences, 74, 4751–4762.CrossRefGoogle Scholar
  32. Fallah, M., Shabanpor, M., Zakerinia, M., & Ebrahimi, S. (2015b). Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-015-4633-0.
  33. Fawcett, R. G., & Collis-George, N. (1967). A filter paper method for determining the moisture characteristics of soil. Australian Journal of Experimental Agriculture and Animal Husbandry, 7, 162–167.CrossRefGoogle Scholar
  34. Flury, M., & Qiu, H. (2008). Modeling colloid-facilitated contaminant transport in the vadose zone. Vadose Zone Journal, 7, 682–697.CrossRefGoogle Scholar
  35. Franchi, A., & O’Melia, C. R. (2003). Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environmental Science & Technology, 37(6), 1122–1129.CrossRefGoogle Scholar
  36. Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hal.Google Scholar
  37. Gao, B., & Saiers, J. E. (2006). Pore-scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media. Water Resources Research.  https://doi.org/10.1029/2005WR004233.
  38. Gardner, R. (1937). A method of measuring the capillary tension of soil moisture over a wide moisture range. Soil Science, 43, 277–283.CrossRefGoogle Scholar
  39. Gargiulo, G., Bradford, S., Simunek, J., Ustohal, P., Vereecken, H., & Klumpp, E. (2007). Bacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein. Journal of Contaminant Hydrology, 92, 255–273.CrossRefGoogle Scholar
  40. Gerscovich, D. M. S., & Sayão, A. S. F. J. (2002). Evaluation of the soil-water characteristic curve equations for soils from Brazil. In: Third International Conference on Unsaturated Soils - UNSAT2002, 1, pp. 295–300, Recife.Google Scholar
  41. Ghanbarian-Alavijeh, B., Liaghat, A., Huang, G., & van Genuchten, M. T. (2010). Estimation of the van Genuchten soil water retention properties from soil textural data. Pedosphere, 20(4), 456–465.CrossRefGoogle Scholar
  42. Ghavami, M., Javadi, S., & Zhao, Q. (2016). Laboratory characterization of the saturated conductivities of compacted clay-organobentonite mixtures. Geo-Chicago 2016, GSP 271.Google Scholar
  43. Greacen, E. L, Walker, G. R. & Cook P. G. (1989). Procedure for the filter paper method of measuring soil water suction. Division of soils, Report 108, CSIRO Division of Water Resources, Glen Osmond, Australia.Google Scholar
  44. Gupta, S. C., & Larson, W. E. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter content, and bulk density. Water Resources Research, 15(6), 1633–1635.CrossRefGoogle Scholar
  45. Hamblin, A. P. (1981). Filter paper method for routine measurement of field water potential. Journal of Hydrology, 53, 355–360.CrossRefGoogle Scholar
  46. Hillel, D. (1971). Soil water-physical principle and processes. New York: Academic Press.Google Scholar
  47. Houston, S. L., Houston, W. N., & Wagner, A. (1994). Laboratory filter paper suction measurements. Geotechnical Testing Journal, 17(2), 185–194.CrossRefGoogle Scholar
  48. Hower, J. C., O’Keefe, J. M. K., Henke, K. R., Wagner, N. J., Copley, G., Blake, D. R., Garrison, T., Oliveira, M. L. S., Kautzmann, R. M., & Silva, L. F. O. (2013). Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: a re-investigation following attempted mitigation of the fire. International Journal of Coal Geology, 116–117, 63–74.CrossRefGoogle Scholar
  49. Ichola, A., & Gaidi, L. (2006). Hydraulic conductivity and pollutant dispersion coefficient assessment during leachate flow in unsaturated clay. Unsaturated Soils, 2(147), 1547–1558.CrossRefGoogle Scholar
  50. Joseph, J. B., Styles, J. R., Yuen, S. T. & Cressey, G. (2001). Variation in clay mineral performance in the presence of leachates. In: Proceeding of the Eighth International Landfill Symposium, Sardinia, Italy.Google Scholar
  51. Kayode, J., Oyedeji, A. A., & Olowoyo, O. (2009). Evaluation of the effects of pollution with spent lubricating oil on the physical and chemical properties of soil. The Pacific Journal of Science and Technology, 10(1), 387–391.Google Scholar
  52. Khlosi, M., Cornelis, W. M., Gabriels, D., & Sin, G. (2006). Simple modification to describe the soil water retention curve between saturation and oven dryness. Water Resources Research.  https://doi.org/10.1029/2005WR004699.
  53. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336.CrossRefGoogle Scholar
  54. Konyai, S., Sriboonlue, V., Trelo-Ges, V., & Muangson, N. (2006). Hysteresis of water retention curve of saline soil. Unsaturated Soils, 189, 1394–1404.CrossRefGoogle Scholar
  55. Krahn, J., & Fredlund, D. G. (1972). On total, matric and osmotic suction. Soil Science, 114(5), 339–348.CrossRefGoogle Scholar
  56. Kronbauer, M. A., Izquierdo, M., Dai, S., Waanders, F. B., Wagner, N. J., Mastalerz, M., Hower, J. C., Oliveira, M. L. S., Taffarel, S. R., Bizani, D., & Silva, L. F. O. (2013). Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view. Science of the Total Environment, 456–457, 95–103.CrossRefGoogle Scholar
  57. Leme, M. A. G., & Miguel, M. G. (2014). Soil water retention curves of a compacted soil used as liner of a sanitary landfill. In: 6TH International Conference on Unsaturated Soils, 1, Sydney – Australia.CrossRefGoogle Scholar
  58. Leong, E. C., He, L., & Rahardjo, H. (2002). Factors affecting the filter paper method for total and matric suction measurements. Geotechnical Testing Journal, 25(3), 322–332.Google Scholar
  59. Liu, T., & Hu, L. (2014). Organic acid transport through a partially saturated liner system beneath a landfill. Geotextiles and Geomembranes, 42, 428–436.CrossRefGoogle Scholar
  60. Lorenzetti, R. J., Bartelt-Hunt, S. L., Burns, S. E., & Smith, J. A. (2005). Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotextiles and Geomembranes, 23(5), 385–400.CrossRefGoogle Scholar
  61. Malaya, C., & Sreedeep, S. Evaluation of SWCC model and estimation procedure for soil and fly ash. (2010). In: World Environmental and Water Resources Congress, Providence, Rhode Island: ASCE 614–622,Google Scholar
  62. Marinho, F. A. M. (1994). Shrinkage behavior of some plastic clays. PhD Thesis, Imperial College, University of London.Google Scholar
  63. Marinho, F. A. M., & Oliveira, O. M. (2006). The filter paper method revised. ASTM Geotechnical Testing Journal, 29(3), 250–258.Google Scholar
  64. Marinho, F. A. M., & Stuermer, M. M. (2000). The influence of the compaction energy on the swsc of a residual soil. In: Geo-Denver 2000, 99, pp. 125–141, Denver.Google Scholar
  65. Martin, J. P., & Koerner, R. M. (1984a). The influence of vadose zone conditions on groundwater pollution. Part I: basic principles and static conditions. Journal of Hazardous Materials, 8, 349–366.CrossRefGoogle Scholar
  66. Martin, J. P., & Koerner, R. M. (1984b). The influence of vadose zone conditions on groundwater pollution. Part II: fluid movement. Journal of Hazardous Materials, 9, 181–207.CrossRefGoogle Scholar
  67. Martinello, K., Oliveira, M. L. S., Molossi, F. A., Ramos, C. G., Teixeira, E. C., Kautzmann, R. M., & Silva, L. F. O. (2014). Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Science of the Total Environment, 470–471, 444–452.CrossRefGoogle Scholar
  68. Mavroulidou, M., Cabarkapa, Z., & Gunn, M. J. (2013). Efficient laboratory measurements of the soil water retention curve. Geotechnical Testing Journal, 36, 88–96.CrossRefGoogle Scholar
  69. Merayyan, S., & Hope, A. (2009). The affect of municipal landfill leachate on the characterization of fluid flow through clay. In: World Environmental and Water Resources Congress, 2009, Great Rivers, Proceedings... Great Rivers: ASCE, pp 2505–2519.Google Scholar
  70. Morales, V. L., Gao, B., & Steenhuis, T. S. (2009). Grain surface-roughness effects on colloid retention in the vadose zone. Vadose Zone Journal, 8(1), 11–20.CrossRefGoogle Scholar
  71. Nouri, M., Homaee, M., & Bybordi, M. (2014). Quantitative assessment of LNAPLs retention in soil porous media. Soil and Sediment Comtamination, 23, 801–819.CrossRefGoogle Scholar
  72. Olson, R. E., & Langfelder, L. J. (1965). Pore water pressures in unsaturated soils. Journal of the Soil Mechanics and Foundations Division, 91, 127–150.Google Scholar
  73. Øygard, J. K., Måge, A., & Gjengedal, E. (2004). Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate. Water Research, 38(12), 2851–2858.CrossRefGoogle Scholar
  74. Ozcoban, M. S., Tufekci, N., Tutus, S., Sahin, U., & Celik, S. O. (2006). Leachate removal rate and the effect of leachate on the hydraulic conductivity of natural (undisturbed) clay. Journal of Scientific & Industrial Research, 65, 264–269.Google Scholar
  75. Powelson, D. K., & Mills, A. L. (2001). Transport of Escherichia coli in sand columns with constant and changing water contents. Journal of Environmental Quality, 30, 238–245.CrossRefGoogle Scholar
  76. Regadío, M., de Soto, I. S., Rodríguez-Rastrero, M., Ruiz, A. I., Gismera, M. J., & Cuevas, J. (2013). Processes and impacts of acid discharges on a natural substratum under a landfill. Science of the Total Environment, 463–464, 1049–1059.CrossRefGoogle Scholar
  77. Ridley, A. M. (1993). The measurement of soil moisture suction. PhD thesis, University of London.Google Scholar
  78. Rojas, E. (2002). Modeling the soil water characteristic curve during wetting e drying cycles. In: 3 o International Conference on Unsaturated Soil, 1, pp. 215–219, Recife, Brasil.Google Scholar
  79. Runnels, D. D. (1976). Wastewaters in the vadose zone of arid regions: geochemical interactions. Ground Water, 14(6), 374–385.CrossRefGoogle Scholar
  80. Saiers, J. E., & Lenhart, J. J. (2003a). Colloid mobilization and transport within unsaturated porous media under transient-flow conditions. Water Resources Research.  https://doi.org/10.1029/2002WR001370.
  81. Saiers, J. E., & Lenhart, J. J. (2003b). Ionic strength effects on colloid transport and interfacial reactions in partially saturated porous media. Water Resources Research.  https://doi.org/10.1029/2002WR001887.
  82. Shang, J. Q., & Rowe, R. K. (2003). Detecting landfill leachate contamination using soil electrical properties. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(1), 3–11.CrossRefGoogle Scholar
  83. Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa Informação Tecnológica .Google Scholar
  84. Tong, H., Yin, K., Ge, L., Giannis, A., Chuan, V. W. L., & Wang, J. Y. (2015). Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions. Journal of Hazardous Materials, 287, 342–348.CrossRefGoogle Scholar
  85. Torkzaban, S., Bradford, S. A., van Genuchten, M. T., & Walker, S. L. (2008). Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Journal of Contaminant Hydrology, 96, 113–127.CrossRefGoogle Scholar
  86. Twarakavi, N., Saito, H., Simunek, J., & van Genuchten, M. T. (2008). A new approach to estimate soil hydraulic parameters using only soil water retention data. Soil Science Society of America Journal, 72, 471–479.CrossRefGoogle Scholar
  87. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 44(5), 892–898.CrossRefGoogle Scholar
  88. van Genuchten, M. T., & Nielsen, D. R. (1991). On describing and predicting the properties of unsaturated soils. Annales Geophysicae, 3(5), 615–628.Google Scholar
  89. van Genuchten, M. T., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2-91/065.Google Scholar
  90. Veyera, G. E., & Martin, J. P. (1983). Composition, density and fabric effects on bulky waste retention characteristics. In J. W. Mercer, P. S. C. Rao, & I. W. Marine (Eds.), Role of the unsaturated zone in radioactive and hazardous waste disposal. Ann Arbor: Ann Arbor Science.Google Scholar
  91. Yin, K., Tong, H., Giannis, A., Chang, W.-C., & Wang, J.-Y. (2016). Insights for transformation of contaminants in leachate at a tropical landfill dominated by natural attenuation. Waste Management, 53, 105–115.CrossRefGoogle Scholar
  92. Zevi, Y., Dathe, A., McCarthy, J. F., Richards, B. K., & Steenhuis, T. S. (2005). Distribution of colloid particles onto interfaces in partially saturated sand. Environmental Science & Technology, 39(18), 7055–7064.CrossRefGoogle Scholar
  93. Zhang, W., Morales, V. L., Cakmak, M. E., Salvucci, A. E., Geohring, L. D., Hay, A. G., Parlance, J.-Y., & Steenhuis, T. S. (2010). Colloid transport and retention in unsaturated porous media: effect of colloid input concentration. Environmental Science & Technology, 44(13), 4965–4972.CrossRefGoogle Scholar
  94. Zhu, L., Li, Y., & Zhang, J. (1997). Sorption of organobentonites to some organic pollutants in water. Environmental Science & Technology, 31(5), 1407–1410.CrossRefGoogle Scholar
  95. Zhuang, J., Qi, J., & Jin, Y. (2005). Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property. Environmental Science & Technology, 39(20), 7853–7859.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Transport and Geotechnical, School of Civil Engineering, Architecture and UrbanismUniversity of CampinasCampinasBrazil

Personalised recommendations