Advertisement

Water, Air, & Soil Pollution

, 229:360 | Cite as

Groundwater Purification in a Polymetallic Mining Area (SW Sinai, Egypt) Using Functionalized Magnetic Chitosan Particles

  • Mohammed F. Hamza
  • Fadia Y. Ahmed
  • Ibrahim El-Aassy
  • Amr Fouda
  • Eric GuibalEmail author
Article

Abstract

A magnetic glycine-grafted chitosan sorbent (Gly) was functionalized to produce a hydrazide derivative (HGly). The two sorbents were tested in batch mode for the sorption of a series of 10 metal ions present in the groundwater collected in three wells in the Wadi (valley) Nasib mining area (SW Sinai, Egypt). HGly is much more efficient for metal recovery than Gly. Under selected experimental conditions (sorbent dosage 1.5 g L−1), the sorption efficiency is not sufficient for achieving the standard levels for drinking water: the most problematic metal ions in terms of drinkability remain aluminum (too high metal concentration in the groundwater), cadmium, and chromium for the three wells (and nickel in the case of only one well). Increasing the sorbent dosage improves the treatment efficiency. The sorbent (HGly) was tested in fixed-bed columns. The breakthrough curves were compared for the different metals for the groundwater collected in the most contaminated of the three wells. The levels of metal concentration in the treated groundwater are too high for direct use in irrigation. However, they are consistent with the standards for livestock drinking water (based on FAO recommendations, Food and Agriculture Organization of the United Nations). The metals can be readily desorbed using 0.5 M HCl solutions with a relatively high concentrating effect (i.e., 50 times). The re-use of the sorbent for three successive cycles of sorption/desorption cycles shows a progressive but weak decrease in sorption and desorption performances.

Keywords

Magnetic chitosan support Glycine derivative Hydrazide-based sorbent Metal-contaminated groundwater Heavy metal removal Drinking water standards Mining area 

Notes

Acknowledgments

The authors acknowledge the French government (through Institut Français d’Egypte) for the post-doc fellowship of Mohammed F. Hamza. They are also grateful to IFE and the Egyptian Academy of Scientific Research and Technology for funding the IMHOTEP project (METAL VALOR).

Supplementary material

11270_2018_3999_MOESM1_ESM.docx (10.5 mb)
ESM 1 (DOCX 10736 kb)

References

  1. Abd El-Rahman, S. S. (2003). Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research, 47, 189–194.CrossRefGoogle Scholar
  2. Agulhon, P., Robitzer, M., David, L., & Quignard, F. (2012). Structural regime identification in ionotropic alginate gels: influence of the cation nature and alginate structure. Biomacromolecules, 13, 215–220.CrossRefGoogle Scholar
  3. Ahmed, M. J. (2016). Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments: review. Process Safety and Environment Protection, 102, 168–182.CrossRefGoogle Scholar
  4. Aranda-Garcia, E., & Cristiani-Urbina, E. (2018). Kinetic, equilibrium, and thermodynamic analyses of Ni(II) biosorption from aqueous solution by acorn shell of Quercus crassipes. Water, Air, and Soil Pollution, 229, 17.CrossRefGoogle Scholar
  5. Arias, A., Saucedo, I., Navarro, R., Gallardo, V., Martinez, M., & Guibal, E. (2011). Cadmium(II) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. Reactive and Functional Polymers, 71, 1059–1070.CrossRefGoogle Scholar
  6. Asokbunyarat, V., van Hullebusch, E. D., Lens, P. N. L. & Annachhatre, A. P.: 2017, 'Immobilization of metal ions from acid mine drainage by coal bottom ash'. Water Air Soil Pollut, 228, 328–337.Google Scholar
  7. Ayers, R. S., & Westcot, D. W. (1994). In FAO (Ed.), Water quality for agriculture. Roma: FAO, Food and Agriculture Organization of United Nations.Google Scholar
  8. Baba, A., & Gündüz, O. (2017). Effect of geogenic factors on water quality and its relation to human health around Mount Ida, Turkey. Water, 9(1), 66 Water 9, 66.CrossRefGoogle Scholar
  9. Boult, S., Hand, V. L., & Vaughan, D. J. (2006). Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface. Science of the Total Environment, 372, 299–305.CrossRefGoogle Scholar
  10. Chattanathan, S. A., Clement, T. P., Kanel, S. R., Barnett, M. O., & Chatakondi, N. (2013). Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones. Water, Air, and Soil Pollution, 224, 1429–1437.Google Scholar
  11. Deliyanni, E. A., Kyzas, G. Z., Triantafyllidis, K. S., & Matis, K. A. (2015). Activated carbons for the removal of heavy metal ions: a systematic review of recent literature focused on lead and arsenic ions. Open Chemistry, 13, 699–708.CrossRefGoogle Scholar
  12. Edwardson, J. A., Candy, J. M., Ince, P. G., McArthur, F. K., Morris, C. M., Oakley, A. E., Taylor, G. A., & Bjertness, E. (1992). Aluminium accumulation, beta-amyloid deposition and neurofibrillary changes in the central nervous system. Ciba Foundation Symposium, 169, 165–179 discussion 179-185.Google Scholar
  13. El Aassy, I. E., El Galy, M. M., Nada, A. A., El Feky, M. G., Abd El Maksoud, T. M., Talaat, S. M., & Ibrahim, E. M. (2011). Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rocks and their environmental impact, southwestern Sinai, Egypt. Journal of Radioanalytical and Nuclear Chemistry, 289, 173–184.CrossRefGoogle Scholar
  14. El Sharkawi, M. A., El Aref, M. M., & Abdel Motelib, A. (2009). Syngenetic and Paleokarstic copper mineralization in the Palaeozoic platform sediments of west Central Sinai, Egypt. In: J. Parnell, Y. Lianjun & C. Changming (Eds.), Sediment-hosted mineral deposits (pp. 157–171). Hoboken: Blackwell Publishing Ltd.Google Scholar
  15. Elwakeel, K. Z., & Guibal, E. (2016). Potential use of magnetic glycidyl methacrylate resin as a mercury sorbent: from basic study to the application to wastewater treatment. Journal of Environmental Chemical Engineering, 4, 3632–3645.CrossRefGoogle Scholar
  16. EU. (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intented for human consumption. In E. Union (Ed.), Document 31998L0083, Brussels (Belgium), European Union.Google Scholar
  17. Fadel, D. A., El-Bahy, S. M., & Abdelaziz, Y. A. (2016). Heavy metals removal using iminodiacetate chelating resin by batch and column techniques. Desalination and Water Treatment, 57, 25718–25728.CrossRefGoogle Scholar
  18. Fu, F. L., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418.CrossRefGoogle Scholar
  19. Galhoum, A. A., Atia, A. A., Mahfouz, M. G., Abdel-Rehem, S. T., Gomaa, N. A., Vincent, T., & Guibal, E. (2015a). Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids. Journal of Materials Science, 50, 2832–2848.CrossRefGoogle Scholar
  20. Galhoum, A. A., Mahfouz, M. G., Atia, A. A., Abdel-Rehem, S. T., Gomaa, N. A., Vincent, T., & Guibal, E. (2015b). Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Industrial and Engineering Chemistry Research, 54, 12374–12385.CrossRefGoogle Scholar
  21. Galhoum, A. A., Mahfouz, M. G., Gomaa, N. A., Abdel-Rehem, S. S., Atia, A. A., Vincent, T., & Guibal, E. (2015c). Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of uranium(VI): uptake kinetics and sorption isotherms. Separation Science and Technology, 50, 2776–2789.Google Scholar
  22. Garmsiri, M., & Mortaheb, H. R. (2015). Enhancing performance of hybrid liquid membrane process supported by porous anionic exchange membranes for removal of cadmium from wastewater. Chemical Engineering Journal, 264, 241–250.CrossRefGoogle Scholar
  23. Gavilan, K. C., Pestov, A. V., Garcia, H. M., Yatluk, Y., Roussy, J., & Guibal, E. (2009). Mercury sorption on a thiocarbamoyl derivative of chitosan. Journal of Hazardous Materials, 165, 415–426.CrossRefGoogle Scholar
  24. Gong, Y., Gai, L., Tang, J., Fu, J., Wang, Q., & Zeng, E. Y. (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 595, 743–751.CrossRefGoogle Scholar
  25. Guibal, E. (2004). Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 38, 43–74.CrossRefGoogle Scholar
  26. Guibal, E., Vincent, T., & Jouannin, C. (2009). Immobilization of extractants in biopolymer capsules for the synthesis of new resins: a focus on the encapsulation of tetraalkyl phosphonium ionic liquids. Journal of Materials Chemistry, 19, 8515–8527.CrossRefGoogle Scholar
  27. Hamza, M. F., & Abdel-Rahman, A. A. H. (2015). Extraction studies of some hazardous metal ions using magnetic peptide resins. Journal of Dispersion Science and Technology, 36, 411–422.CrossRefGoogle Scholar
  28. Hamza, M. F., Abdel-Rahman, A. A. H., Ramadan, S., Raslan, H., Wang, S., Vincent, T., & Guibal, E. (2017). Functionalization of magnetic chitosan particles for the sorption of U(VI), Cu(II) and Zn(II)—hydrazide derivative of glycine-grafted chitosan. Materials, 10, 539–560.CrossRefGoogle Scholar
  29. He, J., & Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78.CrossRefGoogle Scholar
  30. Huang, Y., Fulton, A. N., & Keller, A. A. (2016). Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of the Total Environment, 571, 1029–1036.CrossRefGoogle Scholar
  31. Jeong, H., Kim, H., & Jang, T. (2016). Irrigation water quality standards for indirect wastewater reuse in agriculture: a contribution toward sustainable wastewater reuse in South Korea, Water 8, art. 169.CrossRefGoogle Scholar
  32. Jha, M. K., Gupta, D., Choubey, P. K., Kumar, V., Jeong, J., & Lee, J.-c. (2014). Solvent extraction of copper, zinc, cadmium and nickel from sulfate solution in mixer settler unit (MSU). Separation and Purification Technology, 122, 119–127.CrossRefGoogle Scholar
  33. Kavak, D. (2013). Removal of lead from aqueous solutions by precipitation: statistical analysis and modeling. Desalination and Water Treatment, 51, 1720–1726.CrossRefGoogle Scholar
  34. Krishnani, K. K., Meng, X. G., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153, 1222–1234.CrossRefGoogle Scholar
  35. Lee, J. Y., Choi, J. C., Yi, M. J., Kim, J. W., Cheon, J. Y., Choi, Y. K., Choi, M. J., & Lee, K. K. (2005). Potential groundwater contamination with toxic metals in and around an abandoned Zn mine, Korea. Water, Air, and Soil Pollution, 165, 167–185.CrossRefGoogle Scholar
  36. Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F., & Munoz, J. A. (2009a). Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. Journal of Hazardous Materials, 163, 555–562.CrossRefGoogle Scholar
  37. Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F., & Munoz, J. A. (2009b). Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics. Chemical Engineering Journal, 150, 289–301.CrossRefGoogle Scholar
  38. Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2001). Irreversible precipitation of mercury and lead. Journal of Hazardous Materials, 84, 73–82.CrossRefGoogle Scholar
  39. Miraoui, A., Didi, M. A., & Villemin, D. (2016). Neodymium(III) removal by functionalized magnetic nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 307, 963–971.CrossRefGoogle Scholar
  40. Nikraftar, N., & Ghorbani, F. (2016). Adsorption of As(V) using modified magnetic nanoparticles with ascorbic acid: optimization by response surface methodology. Water, Air, and Soil Pollution, 227, 18.CrossRefGoogle Scholar
  41. Orakwue, E. O., Asokbunyarat, V., Rene, E. R., Lens, P. N. L., & Annachhatre, A. (2016). Adsorption of iron(II) from acid mine drainage contaminated groundwater using coal fly ash, coal bottom ash, and bentonite clay. Water, Air, and Soil Pollution, 227, 74–85.Google Scholar
  42. Otrembska, P., & Gega, J. (2016). Separation of nickel(II) and cadmium(II) ions with ion-exchange and membrane processes. Separation Science and Technology, 51, 2675–2680.CrossRefGoogle Scholar
  43. Pehlivan, E., & Altun, T. (2007). Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80′. Journal of Hazardous Materials, 140, 299–307.CrossRefGoogle Scholar
  44. Peirano, F., Vincent, T., & Guibal, E. (2008). Diffusion of biological molecules through hollow chitosan fibers. Journal of Applied Polymer Science, 107, 3568–3578.CrossRefGoogle Scholar
  45. Pratico, D., Uryu, K., Sung, S., Tang, S., Trojanowski, J. Q., & Lee, V. M. Y. (2002). Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB Journal, 16, 1138–1140.CrossRefGoogle Scholar
  46. Roberts, G. A. F. (1992). Chitin chemistry. Houndmills: Macmillan Education UK 350 pp.CrossRefGoogle Scholar
  47. Ruiz, M. A., Sastre, A. M., & Guibal, E. (2002). Pd and Pt recovery using chitosan gel beads: I. Influence of drying process on diffusion properties. Separation Science and Technology, 37, 2143–2166.CrossRefGoogle Scholar
  48. Simeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., & Andritsos, N. (2015). Optimizing magnetic nanoparticles for drinking water technology: the case of Cr(VI). Science of the Total Environment, 535, 61–68.CrossRefGoogle Scholar
  49. Sorlier, P., Denuzière, A., Viton, C., & Domard, A. (2001). Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules, 2, 765–772.CrossRefGoogle Scholar
  50. Suponik, T., Winiarski, A., & Szade, J. (2015). Processes of removing zinc from water using zero-valent iron. Water, Air, and Soil Pollution, 226, 360–370.Google Scholar
  51. Tan, Z. Y., Peng, H., Liu, H. F., Wang, L. L., Chen, J., & Lu, X. H. (2015). Facile preparation of EDTA-functionalized chitosan magnetic adsorbent for removal of Pb(II). Journal of Applied Polymer Science, 132, 42384.Google Scholar
  52. USEPA. (2012). The drinking water standards and health advisories. In U. O. o. water (Ed.) Washington, DC, pp. 1–12.Google Scholar
  53. Uwamariya, V., Petrusevski, B., Slokar, Y. M., Aubry, C., Lens, P. N. L., & Amy, G. L. (2015). Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by iron oxide-based adsorbents. Water, Air, and Soil Pollution, 226, 184–195.Google Scholar
  54. Vijayaraghavan, K., Thilakavathi, M., Palanivelu, K., & Velan, M. (2005). Continuous sorption of copper and cobalt by crab shell particles in a packed column. Environmental Technology, 26, 267–276.CrossRefGoogle Scholar
  55. Vincent, C., Hertz, A., Vincent, T., Barre, Y., & Guibal, E. (2014). Immobilization of inorganic ion-exchanger into biopolymer foams - application to cesium sorption. Chemical Engineering Journal, 236, 202–211.CrossRefGoogle Scholar
  56. Vincent, C., Barre, Y., Vincent, T., Taulemesse, J. M., Robitzer, M., & Guibal, E. (2015). Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions. Journal of Hazardous Materials, 287, 171–179.CrossRefGoogle Scholar
  57. Wang, K., Qiu, G. M., Cao, H. Y., & Jin, R. F. (2015). Removal of chromium(VI) from aqueous solutions using Fe3O4 magnetic polymer microspheres functionalized with amino groups. Materials, 8, 8378–8391.CrossRefGoogle Scholar
  58. Wang, S., Vincent, T., Faur, C., & Guibal, E. (2016a). Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). International Journal of Molecular Sciences, 17, 1453.CrossRefGoogle Scholar
  59. Wang, Y., Jiao, J. J., Zhang, K., & Zhou, Y. (2016b). Enrichment and mechanisms of heavy metal mobility in a coastal quaternary groundwater system of the Pearl River Delta, China. Science of the Total Environment, 545, 493–502.CrossRefGoogle Scholar
  60. WHO. (2011). Guidelines for drinking-water quality (p. 541). Geneva: World Health Organization.Google Scholar
  61. Yayayuruk, O., & Yayayuruk, A. E. (2016). Removal of Cu(II) from water samples using glycidyl methacrylate-based polymer functionalized with diethylenetriamine tetraacetic acid: investigation of adsorption characteristics. Water, Air, and Soil Pollution, 227, 244–255.Google Scholar
  62. Zawierucha, I., Kozlowski, C., & Malina, G. (2013). Removal of toxic metal ions from landfill leachate by complementary sorption and transport across polymer inclusion membranes. Waste Management (Oxford), 33, 2129–2136.CrossRefGoogle Scholar
  63. Zhao, Y. (2016). Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science, 33, 443–454.CrossRefGoogle Scholar
  64. Zhao, F. P., Repo, E., Sillanpaa, M., Meng, Y., Yin, D. L., & Tang, W. Z. (2015). Green synthesis of magnetic EDTA- and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Industrial and Engineering Chemistry Research, 54, 1271–1281.CrossRefGoogle Scholar
  65. Zhizhaev, A. M., Merkulova, E. N., & Bragin, I. V. (2007). Copper precipitation from sulfate solutions with calcium carbonates. Russian Journal of Applied Chemistry, 80, 1632–1635.CrossRefGoogle Scholar
  66. Zhu, Z. W., Pranolo, Y., & Cheng, C. Y. (2016). Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier. Minerals Engineering, 89, 77–83.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.C2MA, IMT Mines AlesUniv MontpellierAlès cedexFrance
  2. 2.Nuclear Materials AuthorityCairoEgypt
  3. 3.Botany & Microbiology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations