Water, Air, & Soil Pollution

, 229:376 | Cite as

Effects of a Thiamethoxam-Based Insecticide on the Life History of Chironomus xanthus

  • Diogenis F. Ferreira-Junior
  • Renato Almeida Sarmento
  • Althiéris S. Saraiva
  • Aline S. P. Dornelas
  • João L. T. Pestana
  • Amadeu M. V. M. Soares


Thiamethoxam (TMX) is one of the most widely used neonicotinoid insecticides for pest control in agricultural crops. However, information on its acute and chronic toxicity for freshwater non-target insects is still limited. We aimed to evaluate the lethal and sub-lethal effects of TMX-based insecticide on Chironomus xanthus using laboratory ecotoxicological assays. Besides survival, 28-day partial life-cycle tests assessed the effects of chronic exposures on larval growth and emergence of midges. The estimated 48-h LC50 was 32 μg a. i./L of TMX. Chronic tests revealed that chironomids exposed to sub-lethal concentrations of TMX showed reduced larval growth (LOEC = 0.4 and 1.6 μg a.i/L of TMX for head capsule width and growth rate, respectively) and emergence rate (LOEC of 1.6 μg a.i/L of TMX). This study provides important ecotoxicological data concerning effects of TMX-based insecticides on tropical ecosystems and reveals that environmentally relevant concentrations of TMX can adversely affect chironomids populations. Our study also validates C. xanthus as a sensitive species to monitor the ecological integrity of tropical aquatic systems near intensive agricultural areas and to help understand the effects caused by TMX on freshwater insects.


Neonicotinoids Freshwater insects Chironomids Sub-lethal toxicity 


Funding Information

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Brazil (Edital 71/2013—Programa Ciência Sem Fronteiras—Modalidade Pesquisador Visitante Especial-PVE—Projeto: A058_2013). We also thank to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) and the Universidade Federal do Tocantins for the financial support. Althiéris S. Saraiva acknowledges the Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Campos Belos for the support and partnership. Renato A. Sarmento received scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Brazil (Projets: 304178/2015-2; 200895/2015-0). João Pestana acknowledges the Portuguese Foundation for Science and Technology (FCT) for the research contracts under the program “Investigador FCT” (IF/01420/2015).

Supplementary material

11270_2018_3994_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)


  1. Alexander, A. C., Culp, J. M., Liber, K., & Cessna, A. J. (2007). Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetes. Environmental Toxicology and Chemistry, 26(8), 1726–1732.CrossRefGoogle Scholar
  2. Alexander, A. C., Heard, K. S., & Culp, J. M. (2008). Emergent body size of mayfly survivors. Freshwater Biology, 53(1), 171–180.Google Scholar
  3. Anderson, T. A., Salice, C. J., Erickson, R. A., Mcmurry, S. T., Cox, S. B., & Smith, L. M. (2013). Effects of landuse and precipitation on pesticides and water quality in playa lakes of the southern high plains. Chemosphere, 92(1), 84–90.CrossRefGoogle Scholar
  4. Anderson, J. C., Dubetz, C., & Palace, V. P. (2015). Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Science of the Total Environment, 505, 409–422.CrossRefGoogle Scholar
  5. ASTM. (1980). Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Report E-729-80. Philadelphia: American Standards for Testing and Materials.Google Scholar
  6. Auteri, D., Arena, M., Barmaz, S., Ippolito, A., Linguadoca, A., Molnar, T., Sharp, R., Szentes, C., Vagenende, B., & Verani, A. (2017). Neonicotinoids and bees: the case of the European regulatory risk assessment. Science of the Total Environment, 579, 966–971.CrossRefGoogle Scholar
  7. Azevedo-Pereira, H. M. V. S., Lemos, M. F. L., & Soares, A. M. V. M. (2011a). Effects of imidacloprid exposure on Chironomus riparius Meigen larvae: linking acetylcholinesterase activity to behaviour. Ecotoxicology and Environmental Safety, 74(5), 1210–1215.CrossRefGoogle Scholar
  8. Azevedo-Pereira, H. M. V. S., Lemos, M. F. L., & Soares, A. M. V. M. (2011b). Behaviour and growth of Chironomus riparius Meigen (Diptera: Chironomidae) under imidacloprid pulse and constant exposure scenarios. Water, Air, and Soil Pollution, 219(1), 215–224.CrossRefGoogle Scholar
  9. Bartlett, A. J., Hedges, A. M., Intini, K. D., Brown, L. R., Maisonneuve, F. J., Robinson, S. A., Gillis, P. L., & Solla, S. R. (2018). Lethal and sublethal toxicity of neonicotinoid and butenolide insecticides to the mayfly, Hexagenia spp. Environmental Pollution, 238, 63–75.CrossRefGoogle Scholar
  10. Beneberu, G., Mengistou, S., Eggermont, H., & Verschuren, D. (2014). Chironomid distribution along a pollution gradient in Ethiopian rivers, and their potential for biological water quality monitoring. African Journal of Aquatic Science, 39(1), 45–56.CrossRefGoogle Scholar
  11. Bonmatin, J. M. M., Giorio, C., Girolami, V., Goulson, D., Kreutweiser, D. P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E. A. D., Noome, D., Simon-Deslo, N., & Tapparo, A. (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research International, 22, 5–67.CrossRefGoogle Scholar
  12. Cavallaro, M. C., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, K. (2017). Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environmental Toxicology and Chemistry, 36(2), 372–382.CrossRefGoogle Scholar
  13. Cimino, A. M., Boyles, A. L., Thayer, K. A., & Perry, M. J. (2017). Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environmental Health Perspectives, 125, 155–162.CrossRefGoogle Scholar
  14. Codling, G., Al Naggar, Y., Giesy, J. P., & Robertson, A. J. (2016). Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere, 144, 2321–2328.CrossRefGoogle Scholar
  15. Cohen, S. Z., et al. (1995). Pure and applied chemistry, v.67, p.2109–2148, 1995. Resource document. International Union of Pure and Applied Chemistry. Acessed 30 June 2017.
  16. Devine, J. A., & Vanni, M. J. (2002). Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir. Freshwater Biology, 47(6), 1107–1121.CrossRefGoogle Scholar
  17. Duzguner, V., & Erdogan, S. (2012). Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver and central nervous system of rats. Pesticide Biochemistry and Physiology, 104, 58–64.CrossRefGoogle Scholar
  18. FAO. (2014). Specifications and evaluations for thiamethoxam. FAO – Food and agriculture Organization of the United Nations. Specifications and Evaluations for Agricultural Pesticides, 1–34.Google Scholar
  19. Faria, M. S., Nogueira, A. J. A., & Soares, A. M. V. M. (2007). The use of Chironomus riparius larvae to assess effects of pesticides from rice fields in adjacent freshwater ecosystems. Ecotoxicology and Environmental Safety, 67, 218–226.CrossRefGoogle Scholar
  20. Ferreira-Junior, D. F., Sarmento, R. A., Saraiva, A. S., Pereira, R. R., Picanço, M. C., Pestana, J. L. T., & Soares, A. M. V. M. (2017). Low concentrations of glyphosate-based herbicide affects the development of Chironomus xanthus. Water, Air, and Soil Pollution, 228, 390.CrossRefGoogle Scholar
  21. Fonseca, A. L., & Rocha, O. (2004). Laboratory cultures of the native species Chironomus xanthus Rempel, 1939 (Diptera-Chironomidae). Acta Limnologica Brasiliensia, 16(2), 153–161.Google Scholar
  22. Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research International, 22(1), 103–118.CrossRefGoogle Scholar
  23. Goulson, D., & Kleijn, D. (2013). Review: an overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50, 977–987.CrossRefGoogle Scholar
  24. Hall, D. L., Willig, M. R., Moorhead, D. L., Sites, R. W., Fish, E. B., & Mollhagen, T. R. (2004). Aquatic macroinvertebrate diversity of playa wetlands: the role of landscape and island biogeographic characteristics. Wetlands, 24(1), 77–91.CrossRefGoogle Scholar
  25. Han, W., Tian, Y., & Shena, X. (2018). Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere, 192, 59–65.CrossRefGoogle Scholar
  26. Herrmann, S. J., Sublette, J. E., Helland, L. K., Nimmo, D. W. R., Carsella, J. S., Herrmann-hoesing, L. M., & Heuvel, B. D. V. (2016). Species richness , diversity, and ecology of Chironomidae (Diptera) in Fountain Creek: a Colorado front range sandy-bottom watershed. Western North American Naturalist, 76(2), 186–252.CrossRefGoogle Scholar
  27. Jemec, A., Tišler, T., Drobne, D., Sepcić, K., Fournier, D., & Trebse, P. (2007). Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere, 68, 1408–1418.CrossRefGoogle Scholar
  28. Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry, 59, 2897–2908.CrossRefGoogle Scholar
  29. Main, A. R., Michel, N. L., Headley, J. V., Peru, K. M., & Morrissey, C. A. (2015). Ecological and landscape drivers of neonicotinoid insecticide detections and concentrations in Canada’s prairie wetlands. Environmental Science & Technology, 49, 8367–8376.CrossRefGoogle Scholar
  30. Maloney, E. M., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, K. (2017). Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios. Environmental Toxicology and Chemistry, 36, 3091–3101.CrossRefGoogle Scholar
  31. Maloney, E. M., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, K. (2018). Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive toxicity in Chironomus dilutus? Ecotoxicology and Environmental Safety, 156, 354–365.CrossRefGoogle Scholar
  32. Moreira-Santos, M., Fonseca, A. L., Moreira, S. M., Rendón-von Osten, J., Silva, E. M., Soares, A. M. V. M., Guilhermino, L., & Ribeiro, R. (2005). Short-term sublethal (sediment and aquatic roots of floating macrophytes) assays with a tropical chironomid based on postexposure feeding and biomarkers. Environmental Toxicology and Chemistry, 24(9), 2234–2242.CrossRefGoogle Scholar
  33. Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environment International, 74, 291–303.CrossRefGoogle Scholar
  34. Nauen, R., Ebbinghaus-kintscher, U., Salgado, V. L., & Kaussmann, M. (2003). Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pesticide Biochemistry and Physiology, 76(2), 55–69.CrossRefGoogle Scholar
  35. Novelli, A., Vieira, B. H., Cordeiro, D., Cappelini, L. T. D., Vieira, E. M., & Espíndola, E. L. G. (2012). Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere, 86(1), 36–40.CrossRefGoogle Scholar
  36. OECD. (2004). 219: Sediment-water chironomid toxicity test using spiked water (p. 21). Paris: Organisation for Economic Co-operation and Development.Google Scholar
  37. OECD (2011). Guidelines for the testing of chemicals, section 2 effects on biotic systems.Google Scholar
  38. Pestana, J. L. T., Alexander, A. C., Culp, J. M., Baird, D. J., Cessna, A. J., & Soares, A. M. V. M. (2009a). Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms. Environmental Pollution, 157(8), 2328–2334.CrossRefGoogle Scholar
  39. Pestana, J. L. T., Loureiro, S., Baird, D. J., & Soares, A. M. V. M. (2009b). Fear and loathing in the benthos: responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquatic Toxicology, 93(2), 138–149.CrossRefGoogle Scholar
  40. Pestana, J. L. T., Loureiro, S., Baird, D. J., & Soares, A. M. V. M. (2010). Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus. Chemosphere, 78, 241–248.CrossRefGoogle Scholar
  41. Pickford, D. B., Finnegan, M. C., Baxter, L. R., Bohmer, W., Hanson, M. L., Stegger, P., Hommen, U., Hoekstra, P. F., & Hamer, M. (2018). Response of the mayfly (Cloeon dipterum) to chronic exposure to thiamethoxam in outdoor mesocosms. Environmental Toxicology and Chemistry, 37(4), 1040–1050.CrossRefGoogle Scholar
  42. PPDB (2010). The pesticide properties database. Developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, funded by UK national sources and the EU-funded FOOTPRINT project (FP6 - SSP-022704). Accessed 17 June 2017.
  43. Printes, L. B., Fernandes, M. N., & Espíndola, E. L. G. (2011). Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicology and Environmental Safety, 74, 424–430.CrossRefGoogle Scholar
  44. Qi, S., Wang, C., Chen, X. F., Qin, Z. H., Li, X. F., & Wang, C. J. (2013). Toxicity assessments with Daphnia magna of Guadipyr, a new neonicotinoid insecticide and studies of its effect on acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT) and chitobiase activities. Ecotoxicology and Environmental Safety, 98, 339–344.CrossRefGoogle Scholar
  45. Qi, S., Wang, D., Zhu, L., Teng, M., Wang, C., & Wu, L. (2018). Neonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magna. Ecotoxicology and Environmental Safety, 148, 352–358.CrossRefGoogle Scholar
  46. Raby, M., Nowierski, M., Perlov, D., Zhao, X., Hao, C., Poirier, D. G., & Sibley, P. K. (2018a). Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environmental Toxicology and Chemistry, 37(5), 1430–1445.CrossRefGoogle Scholar
  47. Raby, M., Zhao, X., Hao, C., Poirier, D. G., & Sibley, P. K. (2018b). Relative chronic sensitivity of neonicotinoid insecticides to Ceriodaphnia dubia and Daphnia magna. Ecotoxicology and Environmental Safety, 163, 238–244.CrossRefGoogle Scholar
  48. Radolinski, J., Wu, J., Xia, K., & Stewart, R. (2018). Transport of a neonicotinoid pesticide, thiamethoxam, from artificial seed coatings. Science of the Total Environment, 618, 561–568.CrossRefGoogle Scholar
  49. Rancan, M., Rossi, S., & Sabatini, A. G. (2006). Determination of thiamethoxam residues in honeybees by high performance liquid chromatography with an electrochemical detector and post-column photochemical reactor. Journal of Chromatography A, 1123(1), 60–65.CrossRefGoogle Scholar
  50. Roessink, I., Merga, L. B., Zweers, H. J., & Van Den Brink, P. J. (2013). The neonicotinoid imidacloprid shows high chronic toxicity to mayfly nymphs. Environmental Toxicology and Chemistry, 32(5), 1096–1100.CrossRefGoogle Scholar
  51. Samson-Robert, O., Labrie, G., Chagnon, M., & Fournier, V. (2014). Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees. PLoS One, 9(12), 1–17.CrossRefGoogle Scholar
  52. Sánchez-bayo, F., & Hyne, R. V. (2014). Detection and analysis of neonicotinoids in river waters – Development of a passive sampler for three commonly used insecticides. Chemosphere, 99, 143–151.CrossRefGoogle Scholar
  53. Sánchez-bayo, F., Tennekes, H. A., & Koichi, G. (2013). Impact of systemic insecticides on organisms and ecosystems. In S. Trdan (Ed.), Insecticides-Development of Safer and More Effective Technologies (pp. 367–416). Eslovênia: InTech.Google Scholar
  54. Saraiva, A. S., Sarmento, R. A., Rodrigues, A. C., Campos, D., Fedorova, G., Žlábek, V., Gravato, C., Pestana, J. L. T., & Soares, A. M. V. M. (2017). Assessment of thiamethoxam toxicity to Chironomus riparius. Ecotoxicology and Environmental Safety, 137, 240–246.CrossRefGoogle Scholar
  55. Schaafsma, A., Limay-rios, V., Baute, T., Smith, J., & Xue, Y. (2015). Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn ) fields in southwestern Ontario. PLoS One, 10(2), 1–22.CrossRefGoogle Scholar
  56. Shukla, S., Jhamtani, R. C., Dahiya, M. S., & Agarwal, R. (2017). Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicology Reports, 4, 240–244.CrossRefGoogle Scholar
  57. Spies, M., & Reiss, F. (1996). Catalog and bibliography of neotropical and Mexican Chironomidae. Spixiana Suppl, 22, 61–119.Google Scholar
  58. Stoughton, S. J., Liber, K., Culp, J. (2008). Cessna A. Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Archives Environmental Contamination Toxicology, 54, 662–673.CrossRefGoogle Scholar
  59. Struger, J., Grabuski, J., Cagampan, S., Sverko, E., McGoldrick, D., & Marvin, C. H. (2017). Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada. Chemosphere, 69, 516–523.CrossRefGoogle Scholar
  60. Takács, E., Klátyik, S., Mörtl, M., Rácz, G., Kovács, K., Darvas, B., & Székács, A. (2017). Effects of neonicotinoid insecticide formulations and their components on Daphnia magna—the role of active ingredients and co-formulants. International Journal of Environmental Analytical Chemistry, 97(9), 885–900.CrossRefGoogle Scholar
  61. Tomizawa, M., & Casida, J. E. (2011). Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology, 45, 247–268.CrossRefGoogle Scholar
  62. Van Dijk, T., Van Staalduinen, M. A., & Van Der Sluijs, J. P. (2013). Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS One, 8(5), 1–10.Google Scholar
  63. Velisek, J., & Stara, A. (2018). Effect of thiacloprid on early life stages of common carp (Cyprinus carpio). Chemosphere, 194, 481–487.CrossRefGoogle Scholar
  64. Wang, X., Anadon, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.-R., Yuan, Z., & Martínez, M.-A. (2018a). Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Annual Review of Pharmacology and Toxicology, 58, 471–507.CrossRefGoogle Scholar
  65. Wang, Y., Wu, S., Chen, J., Zhang, C., Xu, Z., Li, G., Cai, L., Shen, W., & Wang, Q. (2018b). Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints. Chemosphere, 192, 14–23.CrossRefGoogle Scholar
  66. Yan, S., Wang, J., Zhu, L., Chen, A., & Wang, J. (2015). Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers. Ecotoxicology and Environmental Safety, 122, 54–60.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ciências Florestais e AmbientaisUniversidade Federal do TocantinsGurupiBrazil
  2. 2.Programa de Pós-Graduação em Produção VegetalUniversidade Federal do TocantinsGurupiBrazil
  3. 3.Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia)Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos BelosCampos BelosBrazil
  4. 4.Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal

Personalised recommendations