Advertisement

Water, Air, & Soil Pollution

, 229:365 | Cite as

Tracing Rare Earth Element Sources in Ucides cordatus Crabs by Means of 147Sm/144Nd and 143Nd/144Nd Isotopic Systematics

  • Alice Bosco-SantosEmail author
  • Wanilson Luiz-Silva
  • Elton Luiz Dantas
Article
  • 103 Downloads

Abstract

This study tested for the first time 147Sm/144Nd and 143Nd/144Nd ratios as tracers of rare earth element (REE) sources in semi-terrestrial organisms from a subtropical estuary affected by fertilizer industry activities. The isotopic composition of claw muscles and shells of male crabs (Ucides cordatus) were obtained by thermal ionization mass spectrometry, and provided contrasting signatures incorporated from the physical components by the biota. Our findings showed that crab shells had isotopic compositions similar to seawater, while the claw muscles incorporated the isotopic signature of sediments contaminated by fertilizer. The isotopic ratios (147Sm/144Nd and 143Nd/144Nd) proved that the anthropogenic source is transferring contaminants to the crabs, emerging as a reliable tool to diagnose REE pathway and source to the biota in impacted environments.

Keywords

Isotopic tracers 147Sm/144Nd systematics Estuary Ucides cordatus 

Notes

Acknowledgements

The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq) for the PhD fellowship granted to the first author. We also thank to Dr. Gilhooly III (IUPUI) for the helpful suggestions and comments; the manuscript greatly improved with his support.

Funding Information

This study is financially supported by the São Paulo Research Foundation (FAPESP - Proc. No. 08-11511-8) and the National Council for Scientific and Technological Development (CNPq - Proc. No. 432922/2016-4).

References

  1. Ahmad, S. M., Babu, G. A., Padmakumari, V. M., Dayal, A. M., & Nagabhushanam, P. (2005). Sr, Nd isotopic evidence of terrigenous flux variations in the Bay of Bengal: implications of monsoons during the last 34,000 years. Geophysical Research Letters, 32, 1–4.CrossRefGoogle Scholar
  2. Ahmad, S. M., Padmakumari, V. M., & Babu, G. A. (2009). Strontium and neodymium isotopic compositions in sediments from Godavari, Krishna and Pennar rivers. Current Science, 97, 1766–1769.Google Scholar
  3. Almeida, E. V., Kutter, V. T., Marques, E. D., & Silva-Filho, E. V. (2016). First assessment of trace metal concentration in mangrove crab eggs and other tissues, SE Brazil. Environmental Monitoring and Assessment, 188, 421.CrossRefGoogle Scholar
  4. Ardanova, L. I., Get’man, E. I., Loboda, S. N., Prisedsky, V. V., Tkachenko, T. V., Marchenko, V. I., Antonovichi, V. P., Chivirenai, N. A., Chebishev, K. A., & Lyashenki, A. S. (2010). Isomorphous substitutions of rare earth elements for calcium in synthetic hydroxyapatites. Inorganic Chemistry, 49, 10687–10693.CrossRefGoogle Scholar
  5. Arppe, L., Karhu, J. A., & Vartanyan, S. L. (2009). Bioapatite 87Sr/86Sr of the last woolly mammoths – implications for the isolation of Wrangel Island. Geology, 37, 347–350.CrossRefGoogle Scholar
  6. Baskaran, M. (2011). Environmental isotope geochemistry: Past, Present and future. In M. Baskaran (Ed.), Handbook of Environmental Isotope Geochemistry (pp. 3–10). New York: Springer.Google Scholar
  7. Bentley, R. A. (2006). Strontium isotopes from the earth to the archaeological skeleton: a review. Journal of Archaeological Method and Theory, 13, 135–187.CrossRefGoogle Scholar
  8. Blaise, C., Gagne, F., Harwood, M., Quinn, B., & Hanana, H. (2018). Ecotoxicity responses of the freshwater cnidarian Hydra attenuate to 11 rare earth elements. Ecotoxicology and Environmental Safety, 163, 486–491.CrossRefGoogle Scholar
  9. Blaser, P., Lippold, J., Gutjahr, M., Frank, N., Link, J. M., & Frank, M. (2016). Extracting foraminiferal seawater Nd isotope signatures from bulk deep sea sediment by chemical leaching. Chemical Geology, 439, 189–204.CrossRefGoogle Scholar
  10. Blinova, I., Lukjanova, A., Muna, M., Vija, H., & Kahru, A. (2018). Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of The Total Environment, 642, 1100–1107.CrossRefGoogle Scholar
  11. Borrego, J., López-González, N., Carro, B., & Lozano-Soria, O. (2004). Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south-western Spain). Marine Pollution Bulletin, 49, 1045–1053.CrossRefGoogle Scholar
  12. Bosco-Santos, A., Luiz-Silva, W., Silva-Filho, E. V., Souza, M. D. C., Dantas, E. L., & Navarro, M. S. (2017). Fractionation of rare Earth and other trace elements in crabs, Ucides cordatus, from a subtropical mangrove affected by fertilizer industry. Journal of Environmental Sciences, 54, 69–76.CrossRefGoogle Scholar
  13. Calado, B. O. de (2008). Isotopic (Sr and Nd) and elementary geochemistry as anthropic poluent tracers, study case: the phosphogypsum of Cubatão (SP). http://www.teses.usp.br/teses/disponiveis/ 44/44142/tde-19082008-082411/. Accessed 16 November 2015.
  14. Christofoletti, R. A. (2005). Ecologia trófica do caranguejo-uça Ucides cordatus (Linnaeus, 1763) (Crustacea, Ocypodidae) e o fluxo de nutrientes em bosques de mangue, na região de Iguape (SP). Jaboticabal, Brazil: Universidade Estadual Paulista.Google Scholar
  15. Copeland, S. R., Sponheimer, M., de Ruiter, D. J., Lee-Thorp, J. A., Codron, D., Le Roux, P. J., Grimes, V., & Richards, M. P. (2011). Strontium isotope evidence for landscape use by early hominids. Nature, 474, 76–78.CrossRefGoogle Scholar
  16. Cordeiro, P. F. O., Brod, J. A., Dantas, E. L., & Barbosa, E. S. R. (2010). Mineral chemistry, isotope geochemistry and petrogenesis of niobium-rich rocks from Catalão I carbonatite-phoscorite complex, Central Brazil. Lithos, 118, 223–237.CrossRefGoogle Scholar
  17. Di Leonardo, R., Bellanca, A., Neri, R., Tranchida, G., & Mazzola, S. (2009). Distribution of REEs in box-core sediments offshore an industrial area in SE Sicily, Ionian Sea: Evidence of anomalous sedimentary inputs. Chemosphere, 77, 778–784.CrossRefGoogle Scholar
  18. Dopieralska, J., Belka, Z., & Walczak, A. (2016). Nd isotope composition of conodonts: An accurate proxy of sea-level fluctuations. Gondwana Research, 34, 284–295.CrossRefGoogle Scholar
  19. El-Didamony, H., Ali, M. M., Awwad, N. S., Attallah, M. F., & Fawzy, M. M. (2013). Radiological characterization and treatment of contaminated phosphogypsum waste. Radiochemistry, 55, 454–459.CrossRefGoogle Scholar
  20. Feranec, R. S., Hadly, E. A., & Paytan, A. (2007). Determining landscape use of Holocene mammals using strontium isotopes. Oecologia, 153, 943–950.CrossRefGoogle Scholar
  21. Gioia, S. M. L. C., & Pimentel, M. M. (2000). The Sm-Nd method in the geochronology laboratory of the University of Brasilia. Anais da Academia Brasileira de Ciências, 72, 219–245.CrossRefGoogle Scholar
  22. Gonzalez, V., Vignati, D. A. L., Pons, M. N., Montarges-Pelletier, E., Bojic, C., & Giamberini, L. (2015). Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environmental Pollution, 199, 139–147.CrossRefGoogle Scholar
  23. Gueriau, P., Mocuta, C., Dutheil, D. B., Cohen, S. X., Thiaudiere, D., Charbonnier, S., Clement, G., & Bertrand, L. (2014). Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils. PLoS One, 9(1), e86946.  https://doi.org/10.1371/journal.pone.0086946.CrossRefGoogle Scholar
  24. Hosseini, M., Bastami, A. A., Khoei, J. K., Esmailian, M., Songhori, E. J., & Najafzadeh, M. (2012). Concentrations of heavy metals in selected tissues of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) and sediments from Persian Gulf. World Applied Sciences Journal, 19, 1398–1405.Google Scholar
  25. Klevenz, V., Vance, D., Schmidt, D. N., & Mezger, K. (2008). Neodymium isotopes in benthic foraminifera: core-top systematics and a down-core record from the Neogene south Atlantic. Earth and Planetary Science Letters, 265, 571–587.CrossRefGoogle Scholar
  26. Kocsis, L., Trueman, C. N., & Palmer, M. R. (2010). Protracted diagenetic alteration of REE contents in fossil bioapatites: direct evidence from Lu–Hf isotope systematics Geochimica et Cosmochimica Acta, 74, 6077–6092.CrossRefGoogle Scholar
  27. Koenig, A. E., Rogers, R. R., & Trueman, C. N. (2009). Visualizing fossilization using laser ablation-inductively coupled plasmamass spectrometry maps of trace elements in Late Cretaceous bones. Geology, 37, 511–514.CrossRefGoogle Scholar
  28. Kraft, S., Frank, M., Hathorne, E., & Weldeab, S. (2013). Assessment of seawater Nd isotope signatures extracted from foraminiferal shells and authigenic phases of Gulf of Guinea sediments. Geochimica et Cosmochimica Acta, 121, 414–435.CrossRefGoogle Scholar
  29. Kulczcka, J., Kowalski, Z., Smol, M., & Wirth, H. (2016). Evaluation of the recovery of Rare Earth Elements (REE) from phosphogypsum waste e case study of the WIZOW Chemical Plant (Poland). Journal of Cleaner Production, 113, 345–354.CrossRefGoogle Scholar
  30. Lipin, B. R., & McKay, G. A. (1989). Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, 21, 348.Google Scholar
  31. Luquet, G. (2012). Biomineralizations: insights and prospects from crustaceans. ZooKeys, 176, 103–121.CrossRefGoogle Scholar
  32. Marsden, I. D., & Rainbow, P. S. (2004). Does the accumulation of trace metals in crustaceans affect their ecology—the amphipod example? Journal of Experimental Marine Biology and Ecology, 300, 373–408.CrossRefGoogle Scholar
  33. Martin, E. E., & Haley, B. A. (2000). Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochimica et Cosmochimica Acta, 64, 835–847.CrossRefGoogle Scholar
  34. Martin, E. E., & Scher, H. D. (2004). Preservation of seawater Sr and Nd Isotopes in fossil fish teeth: bad news and good news. Earth and Planetary Science Letters, 220, 25–39.CrossRefGoogle Scholar
  35. Nordhaus, I., & Wolff, M. (2007). Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Marine Biology, 151, 1665–1681.CrossRefGoogle Scholar
  36. Nordhaus, I., Wolff, M., & Diele, K. (2006). Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuarine, Coastal and Shelf Sciences, 67, 239–250.CrossRefGoogle Scholar
  37. Oliveira, S. M. B., Silva, P. S. C., Mazzilli, B. P., Favaro, D. I. T., & Saueia, C. H. (2007). Rare earth elements as tracers of sediment contamination by phosphogypsum in the Santos estuary, southern Brazil. Applied Geochemistry, 22, 837–850.CrossRefGoogle Scholar
  38. Perez-Lopez, R., Nieto, J. M., Lopez-Coto, I., Aguado, J. L., Bolivar, J. P., & Santisteban, M. (2010). Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Applied Geochemistry, 25, 705–715.CrossRefGoogle Scholar
  39. Piegras, D. J., & Wasserburg, G. J. (1980). Neodymium isotopic variations in seawater. Earth and Planetary Science Letters, 50, 128–138.CrossRefGoogle Scholar
  40. Pinheiro, M. A. A., & Fiscarelli, A. G. (2001). Manual de Apoio a Fiscalização do Caranguejo-Uça (Ucides cordatus). Jaboticabal: Unesp/Cepsul/Ibama.Google Scholar
  41. Pinheiro, M. A. A., Silva, P. P. G., Duarte, L. F. A., Almeida, A. A., & Zanotto, F. P. (2012). Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma:Rhizophoraceae). Ecotoxicology and Environmental Safety, 81, 114–121.CrossRefGoogle Scholar
  42. Pinheiro, M. A. A., Duarte, L. F. A., Adam, M. L., & Torres, R. A. (2013). Habitat monitoring and genotoxicity in Ucides cordatus (Crustacea: Ucididae), as tools to manage a mangrove reserve in southeastern Brazil. Environmental Monitoring and Assessment, 185, 8273–8285.CrossRefGoogle Scholar
  43. Piotrowski, A. M., Galy, A., Nicholl, J. A. L., Roberts, N., Wilson, D. J., Clegg, J. A., & Yu, J. (2012). Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth and Planetary Science Letters, 357-358, 289–297.CrossRefGoogle Scholar
  44. Pires, C., Marques, A., Carvalho, M. L., & Batista, I. (2017). Chemical Characterization of Cancer Pagurus, Maja Squinado, Necora Puber and Carcinus Maenas Shells. Poultry, Fisheries & Wildlife Sciences, 5, 181.  https://doi.org/10.4172/2375-446X.1000181.
  45. Rainbow, P. S. (1997). Ecophysiology of trace metal uptake in crustaceans. Estuarine, Coastal and Shelf Science, 44, 169–175.CrossRefGoogle Scholar
  46. Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183–192.CrossRefGoogle Scholar
  47. Rainbow, P. S., Poirier, L., Smith, B. D., Brix, K. V., & Luoma, S. N. (2006). Trophic transfer of trace metals: subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean. Marine Ecology Progress Series, 308, 91–100.CrossRefGoogle Scholar
  48. Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120, 497–507.CrossRefGoogle Scholar
  49. Reinecke, A. J., Snyman, R. G., & Nel, J. A. (2003). Uptake and distribution of lead (Pb) and cadmium (Cd) in the freshwater crab, Potamonautes perlatus (crustacea) in the Eerste river. South Africa. Water, Air, & Soil Pollution, 145, 395–408.Google Scholar
  50. Romero-Freire, A., Minguez, L., Pelletier, M., Cayer, A., Caillet, C., Devin, S., Gross, E. M., Guerold, F., Pain-Devin, S., Vignati, D. A. L., & Giamberini, L. (2018). Assessment of baseline ecotoxicity of sediments from a prospective mining area enriched in light rare earth elements. Science of The Total Environment, 612, 831–839.CrossRefGoogle Scholar
  51. Sanders, L. M., Luiz-Silva, W., Machado, W., Sanders, C. J., Marotta, H., Enrich-Prast, A., Bosco-Santos, A., Boden, A., Silva-Filho, E. V., Santos, I. R., & Patchineelam, S. R. (2013). Rare earth element and radionuclide distribution in surface sediments along an estuarine system affected by fertilizer industry contamination. Water, Air, & Soil Pollution, 224, 1742.Google Scholar
  52. Silva, P. S. C., Damatto, S. R., Maldonado, C., Fávaro, D. I. T., & Mazzilli, B. P. (2011). Metal distribution in sediment cores from São Paulo State Coast Brazil. Marine Pollution Bulletin, 62, 1130–1139.CrossRefGoogle Scholar
  53. Silva, B. M. d. S., Morales, G. P., Gutjahr, A. L. N., Fail, K. C. F., & Carneiro, B. S. (2018). Bioacumulation of trace elements in the crab Ucides cordatus (Linnaeus, 1763) from the macrotidal mangrove coast region of the Brazilian Amazon. Environmental Monitoring and Assessment, 190, 214.CrossRefGoogle Scholar
  54. Simkiss, K., & Taylor, M. G. (1995). Transport of metals across membranes. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 1–14). Chichester: John Wiley & Sons Ltd.Google Scholar
  55. Singh, S.K., Rai, S.K., & Krishnaswami, S. (2008). Sr and Nd isotopes in river sediments from the Ganga basin: sediment provenance and spatial variability in physical erosion. Journal of Geophysical Research, 113.  https://doi.org/10.1029/2007JF000909.
  56. Tachikawa, K., Piotrowski, A. M., & Bayon, G. (2014). Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures. Quaternary Science Reviews, 88, 1–13.CrossRefGoogle Scholar
  57. Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.CrossRefGoogle Scholar
  58. Tranchida, G., Oliveri, E., Angelone, M., Bellanca, A., Censi, P., Délia, M., Neri, R., Placenti, F., Sprovieri, M., & Mazzola, S. (2011). Distribution of rare earth elements in marine sediments from the Strait of Sicily (western Mediterranean Sea): evidence of phosphogypsum waste contamination. Marine Pollution Bulletin, 62, 182–191.CrossRefGoogle Scholar
  59. Tripathy, G. R., Singh, S. K., & Krishnaswami, S. (2011). Sr and Nd isotopes as tracers of chemical and physical erosion. In M. Baskaran (Ed.), Handbook of Environmental Isotope Gechemistry (pp. 521–552). New York: Springer.Google Scholar
  60. Tutken, T., Vennemann, T. W., & Pfretzschner, H.-U. (2011). Nd and Sr isotope compositions in moderns and fossil bones – Proxies for vertebrate provenance and taphonomy. Geochimica et Cosmochimica Acta, 75, 5951–5970.CrossRefGoogle Scholar
  61. Viers, J., Roddaz, M., Filizola, N., Guyot, J., Francis, S., Brunet, P., Zouiten, C., Boucayrand, C., Martin, F., & Boaventura, G. R. (2008). Seasonal and provenance controls on Nd–Sr isotopic compositions of Amazon river suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth and Planetary Science Letters, 274, 511–523.CrossRefGoogle Scholar
  62. Vijayaraghavan, K., Jegan, J. R., Palanivelu, K., & Velan, M. (2005). Nickel recovery from aqueous solution using crab shell particles. Adsorption Science and Technology, 23, 303–311.CrossRefGoogle Scholar
  63. Walter, H. J., Hegner, E., Diekmann, B., Kuhn, G., & Loeff, M. M. R. V. D. (2000). Provenance and transport of terrigenous sediment in the south Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence. Geochimica et Cosmochimica Acta, 64, 3813–3827.CrossRefGoogle Scholar
  64. Wu, S., Wang, L., Zhao, L., Zhang, P., El-Shall, H., Moudgil, B., Huang, X., & Zhang, L. (2018). Recovery of rare earth elements from phosphate rock by hydrometallurgical processes – A critical review. Chemical Engineering Journal, 335, 774–800.CrossRefGoogle Scholar
  65. Yang, S., Jiang, S., Ling, H., Xia, V., Sun, M., & Wang, D. (2007). Sr-Nd isotopic compositions of the Changjiang sediments: implications for tracing sediment sources. Science China Earth Sciences, 50, 1556–1565.CrossRefGoogle Scholar
  66. Zeng, Z., Ma, Y., Wang, X., Chen, C. T. A., Yin, X., Zhang, S., Zhang, J., & Jiang, W. (2018). Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough. Journal of Marine Systems, 180, 90–101.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Geosciences, Department of Geology and Natural ResourcesUniversity of CampinasSão PauloBrazil
  2. 2.Institute of Geosciences, Department of GeologyUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations