Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biodegradation of Bisphenol A by a Newly Isolated Bacillus megaterium Strain ISO-2 from a Polycarbonate Industrial Wastewater

  • 321 Accesses

  • 2 Citations


A novel bacterium, Bacillus megaterium strain ISO-2, capable of the degradation of bisphenol A (BPA), was isolated from wastewater collected from a polycarbonate industry. The bacterium, which was grown on mineral salts medium supplemented with yeast extract, exhibited complete BPA removal from 5 mg L−1 BPA within 72 h. BPA-degrading ability and bacterial growth, however, were inhibited at higher BPA concentrations. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis revealed several intermediates during the BPA degradation process by B. megaterium strain ISO-2. These intermediates were identified as 4-(2-hydroxypropan-2-yl)phenol, 4-isopropylphenol, 4-isopropenylphenol, benzoic acid, butanoic acid, propanoic acid, benzeneacetic acid, phenylethyl alcohol, 4-hydroxy-3-methoxybenzaldehyde, and phenolic compounds. The possible degradation pathway of BPA was proposed. In addition, strain ISO-2 effectively removed BPA present in the wastewater and could also tolerate high total dissolved solids (TDS) and an alkaline environment. The results indicate that B. megaterium strain ISO-2 is a very effective bacterium for BPA removal from industrial or contaminated wastewaters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. APHA. (2005). Standard methods for the experimentation of water and wastewater (21st ed.). Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation.

  2. Badiefar, L., Yakhchali, B., Rodriguez-Couto, S., Veloso, A., García-Arenzana, J. M., Matsumura, Y., & Khodabandeh, M. (2015). Biodegradation of bisphenol A by the newly isolated Enterobacter gergoviae strain BYK-7 enhanced using genetic manipulation. RSC Advances. https://doi.org/10.1039/C5RA01818H.

  3. Carlisle, J., Chan, D., Golub, M., Henkel, S., Painter, P., & Wu, K. L. (2009). Toxicological profile for bisphenol A. California: Office of Environmental Health Hazard Assessment.

  4. Deblonde, T., Cossu-Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater: a review of the literature. International Journal of Hygiene and Environmental Health. https://doi.org/10.1016/j.ijheh.2011.08.002.

  5. Eio, E. J., Kawai, M., Tsuchiya, K., Yamamoto, S., & Toda, T. (2014). Biodegradation of bisphenol A by bacterial consortia. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2014.09.011.

  6. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791.

  7. Fischer, J., Kappelmeyer, U., Kastner, M., Schauer, F., & Heipieper, H. J. (2010). The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2010.03.007.

  8. Gavrilescu, M., Demnerova, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology. https://doi.org/10.1016/j.nbt.2014.01.001.

  9. Ike, M., Jin, C. S., & Fujita, M. (1995). Isolation and characterization of a novel bisphenol A-degrading bacterium Pseudomonas paucimobilis strain FJ-4. Japanese Journal of Water Treatment Biology. https://doi.org/10.2521/jswtb.31.203.

  10. Ike, M., Jin, C. S., & Fujita, M. (2000). Biodegradation of bisphenol A in the aquatic environment. Water Science and Technology. https://doi.org/10.1002/etc.5620201211.

  11. Ike, M., Chen, M. Y., Jin, C. S., & Fujita, M. (2002). Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol A. Environmental Toxicology. https://doi.org/10.1002/tox.10079.

  12. Kamaraj, M., Sivaraj, R., & Venckatesh, R. (2014). Biodegradation of bisphenol A by the tolerant bacterial species isolated from coastal regions of Chennai, Tamil Nadu, India. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2014.02.014.

  13. Kang, J. H., & Kondo, F. (2002a). Bisphenol A degradation by bacteria isolated from river water. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-002-1209-0.

  14. Kang, J. H., & Kondo, F. (2002b). Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Chemosphere. https://doi.org/10.1016/S0045-6535(02)00315-6.

  15. Kang, J. H., Katayama, Y., & Kondo, F. (2006). Biodegradation or metabolism of bisphenol A: from microorganisms to mammals. Toxicology. https://doi.org/10.1016/j.tox.2005.10.001.

  16. Kee, Y. L., Mukherjee, S., & Pariatamby, A. (2015). Effective remediation of phenol, 2, 4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate in farm effluent using Guargum-a plant based biopolymer. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.04.074.

  17. Kolvenbach, B., Schlaich, N., Raoui, Z., Prell, J., Zuhlke, S., Schaffer, A., Guengerich, F. P., & Corvini, P. F. (2007). Degradation pathway of bisphenol A: does ipso substitution apply to phenols containing a quaternary alpha-carbon structure in the para position. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.00329-07.

  18. Kumar, S., Stecher, G., Tamura, K., et al. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.

  19. Li, G., Zu, L., Wong, P. K., Hui, X., Lu, Y., Xiong, J., & An, T. (2012). Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: kinetics, mechanism and estrogenic transition. Bioresource Technology. https://doi.org/10.1016/j.biortech.2012.03.067.

  20. Lobos, J. H., Leib, T. K., Su, T. M., et al. (1992). Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Applied and Environmental Microbiology, 58(6), 1823–1831.

  21. Lu, N., Lu, Y., Liu, F., Zhao, K., Yuan, X., Zhao, Y., Li, Y., Qin, H., & Zhu, J. (2013). H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A (BPA): kinetics, toxicity and degradation pathways. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.02.023.

  22. Matsumura, Y., Hosokawa, C., Sasaki-Mori, M., Akahira, A., Fukunaga, K., Ikeuchi, T., Oshiman, K., & Tsuchido, T. (2009). Isolation and characterization of novel bisphenol A-degrading bacteria from soils. Biocontrol Science. https://doi.org/10.4265/bio.14.161.

  23. Mita, L., Grumiro, L., Rossi, S., Bianco, C., Defez, R., Gallo, P., Mita, D. G., & Dian, N. (2015). Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor. Journal of Hazardous Material. https://doi.org/10.1016/j.jhazmat.2015.02.072.

  24. Mohapatra, D. P., Brar, S. K., Tyagi, R. D., & Surampalli, R. Y. (2011). Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant. Journal of Xenobiotics. https://doi.org/10.4081/xeno.2011.e3.

  25. Nakamura, D., Yanagiba, Y., Duan, Z., Ito, Y., Okamura, A., Asaeda, N., Tagawa, Y., Li, C., Taya, K., Shang, S. Y., Naito, H., Ramghan, D. H., Kamijima, M., & Nakajima, T. (2010). Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicological Letter. https://doi.org/10.1016/j.toxlet.2010.02.002.

  26. Nomiyama, K., Tanizaki, T., Koga, T., Arizono, K., & Shinohara, R. (2007). Oxidative degradation of BPA using TiO2 in water, and transition of estrogenic activity in the degradation pathways. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-005-0204-7.

  27. Ohko, Y., Ando, I., Niwa, C., Tatsuma, T., Yamamura, T., Nakashima, T., Kubota, Y., & Fujishima, A. (2001). Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental Science and Technology. https://doi.org/10.1021/es001757t.

  28. Peng, Y. H., Chen, Y. J., Chang, Y. J., & Shih, Y. (2015). Biodegradation of bisphenol A with diverse microorganisms from river sediment. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2014.12.051.

  29. Ronen, Z., & Abeliovich, A. (2000). Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.66.6.2372-2377.2000.

  30. Saitou, N., Nei, M., et al. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

  31. Saiyood, S., Vangnai, A. S., Thiravetyan, P., & Inthorn, D. (2010). Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2010.02.008.

  32. Saiyood, S., Vangnai, A. S., Inthorn, D., & Thiravetyan, P. (2012). Treatment of total dissolved solids from plastic industrial effluent by halophytic plants. Water, Air and Soil Pollution. https://doi.org/10.1007/s11270-012-1242-1.

  33. Sakai, K., Yamanaka, H., Moriyoshi, K., Ohmoto, T., & Ohe, T. (2007). Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater. Bioscience, Biotechnology, and Biochemistry. https://doi.org/10.1271/bbb.60351.

  34. Sasaki, M., Akahira, A., Oshiman, K., Tsuchido, T., & Matsumura, Y. (2005a). Purification of cytochrome P450 and ferredoxin, involved in bisphenol A degradation, from Sphingomonas sp. strain AO1. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.71.12.8024-8030.2005.

  35. Sasaki, M., Maki, J., Oshiman, K., Matsumura, Y., & Tsuchido, T. (2005b). Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation. https://doi.org/10.1007/s10532-004-5023-4.

  36. Staples, C. A., Dom, P. B., Klecka, G. M., O’Blook, S. T., & Harris, L. R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. https://doi.org/10.1016/S0045-6535(97)10133-3.

  37. Suyamud, B., Thiravetyan, P., Panyapinyopol, B., & Inthorn, D. (2018). Dracaena sanderiana endophytic bacteria interactions: effect of endophyte inoculation on bisphenol A removal. Ecotoxicology and Environmental Safety, 157, 318–326.

  38. Tamura, K., Nei, M., Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, USA, 11030–11035.

  39. Toyama, T., Sato, Y., Inoue, D., Sei, K., Chang, Y. C., Kikuchi, S., & Ike, M. (2009). Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. Journal of Bioscience and Bioengineering. https://doi.org/10.1016/j.jbiosc.2009.03.011.

  40. Watanabe, N., Horikoshi, S., Kawabe, H., Sugie, Y., Zhao, J., & Hidaka, H. (2003). Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere, 52, 851–859. https://doi.org/10.1016/S0045-6535(02)00837-8.

  41. Yamanaka, H., Moriyoshi, K., Ohmoto, T., Ohe, T., & Sakai, K. (2007). Degradation of bisphenol A by Bacillus pumilus isolated from kimchi, a traditionally fermented food. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/BF02685937.

  42. Yoshihara, S., Makishima, M., Suzuki, N., Ohta, S., et al. (2001). Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicological Sciences, 62(2), 221–227.

  43. Zhang, C., Zeng, G., Yuan, L., Yu, J., Li, J., Huang, G., Xi, B., & Liu, H. (2007). Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere. https://doi.org/10.1016/j.chemosphere.2006.12.012.

  44. Zhang, W., Yin, K., & Chen, L. (2013). Bacteria-mediated bisphenol A degradation. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-013-4949-z.

  45. Zühlke, M. K., Schlüter, R., Mikolasch, A., Zühlke, D., Giersberg, M., Schindler, H., Henning, A. K., Frenzel, H., Hammer, E., Lalk, M., Bornscheuer, U. T., Riedel, K., Kunze, G., & Schauer, F. (2017). Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-016-8061-z.

Download references


This research was financially supported by the Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program (grant number PHD/0177/2556). The authors would also like to thank the Kurita Water and Environmental Foundation (KWEF-AIT research grant 2017) for their additional support.

Author information

Correspondence to D. Inthorn.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material


(DOCX 11373 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suyamud, B., Inthorn, D., Panyapinyopol, B. et al. Biodegradation of Bisphenol A by a Newly Isolated Bacillus megaterium Strain ISO-2 from a Polycarbonate Industrial Wastewater. Water Air Soil Pollut 229, 348 (2018). https://doi.org/10.1007/s11270-018-3983-y

Download citation


  • Bisphenol A
  • Bacillus megaterium
  • Biodegradation
  • Polycarbonate industrial wastewater