Water, Air, & Soil Pollution

, 229:340 | Cite as

Kinetic and Thermodynamic Behavior on the Sorption of Clindamycin from an Aqueous Medium by Modified Surface Zeolitic Tuffs

  • A. González-Ortiz
  • J. J. Ramírez-García
  • M. J. Solache-RíosEmail author


Clindamycin (CLD), an antibiotic derivate of lincomycin, is widely used; the presence of this drug in the wastewater and the environment could produce resistance in bacteria. In this work, the sorption of this drug by two surfactant-modified zeolitic tuffs was studied considering contact time, initial concentration, pH, and temperature. The kinetic behavior indicates that the equilibrium times were between 15 and 12 h for all materials, and the results were best adjusted to Ho and Mc Kay model. The highest adsorption was obtained with the hexadecyltrimethylammonium-modified zeolitic tuff from Oaxaca, Mexico (1.56 mg/g). The sorption isotherms obtained showed a linear behavior, indicating a partition mechanism. The thermodynamic parameters were determined from the isotherms at different temperatures and Van Ho equation; the processes are exothermic and not spontaneous. The best pH for the adsorption is between 8 and 11. The results show that the modified zeolitic tuffs are potential materials for the adsorption of CLD from water.


Clindamycin Sorption Zeolitic tuff Surfactant Kinetics Thermodynamic parameters 


Funding Information

The authors acknowledge the financial support from the CONACYT (Project 215997) and CONACYT scholar grant no. 556031 for AGO.


  1. Ali, I., Asim, M., & Khan, T. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183.CrossRefGoogle Scholar
  2. Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, 3381–3393.CrossRefGoogle Scholar
  3. Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environment remediation. Review. Microporous and Mesoporous Materials, 61, 43–56.CrossRefGoogle Scholar
  4. Cappelletti, A., Conella, A., Langella, M., Mercurio, L., Catalanotti, V., & Monetti, B. D. (2015). Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations. Part 1. Mineralogical and technological characterization of some industrial zeolite rich-rocks. Microporous and Mesoporous Materials, 250, 232–244.CrossRefGoogle Scholar
  5. Chen, W. R., Ding, Y., Johnson, C. T., Teppen, B. J., Boyd, S. A., & Li, H. (2010). Reaction of lincosamide antibiotics with manganese oxide in aqueous solution. Environmental Science Technology, 44, 4486–4492.CrossRefGoogle Scholar
  6. Colella, C., & Mumpton, F. A. (2000). Natural zeolites for the third millennium, ICNZ, International Committee on Natural Zeolites. Italy: De Frede Editore.Google Scholar
  7. Dávila-Estrada, M., Ramírez-García, J. J., Díaz Nava, M. C., & Solache-Ríos, M. (2016). Sorption of 17α-ethinylestradiol by surfactant-modified zeolite-rich tuff from aqueous solutions. Water, Air, & Soil Pollution, 227, 1–10.CrossRefGoogle Scholar
  8. Dávila-Estrada, M., Ramírez-García, J. J., Solache-Ríos, M. J., & Gallegos-Pérez, J. L. (2018). Kinetic and equilibrium sorption studies of ceftriaxone and paracetamol by surfactant-modified zeolite. Water, Air, & Soil Pollution, 229, 1–9.CrossRefGoogle Scholar
  9. Díaz-Nava, M. C., Olguín, M. T., & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74, 67–75.CrossRefGoogle Scholar
  10. Díaz-Nava, M. C., Olguín, M. T., Solache-Ríos, M., Alarcón-Herrera, M. T., & Aguilar-Elguezabal, A. (2005). Characterization and improvement of ion exchange capacities of Mexican clinoptilolite-rich tuffs. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 51, 231–240.CrossRefGoogle Scholar
  11. Dong, Y., Wu, D., Chen, X., & Lin, Y. (2010). Adsorption of bisphenol a from water by surfactant-modified zeolitic. Journal of Colloid and Interface Science, 348, 585–590.CrossRefGoogle Scholar
  12. (FEUM) Farmacopea de los Estados Unidos Mexicanos. (2014). Secretaria de Salud, México.Google Scholar
  13. Gamboa, P. A., Ramírez-García, J. J., Solache-Ríos, M., Díaz-Nava, M. C., & Gallegos-Pérez, J. L. (2016). Comparison of different modified aluminosilicate networks for the removal diclofenac. Desalination and Water Treatment, 57, 26401–26413.CrossRefGoogle Scholar
  14. Gao, P., Ding, Y., Li, H., & Xagoraraki, I. (2012). Occurrence of pharmaceutical in a municipal wastewater treatment plant: mass balance and removal process. Chemosphere, 88, 17–24.CrossRefGoogle Scholar
  15. Gennaro, B. D., Catalanotti, L., Bowman, R. S., & Mercurio, M. (2015). Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation. Journal of Colloid and Interface Science, 430, 178–183.CrossRefGoogle Scholar
  16. Gholami, M., Ramahni, K., Ramahni, A., Ramahni, H., & Esrafali, A. (2016). Oxidative degradation of clindamycin in aqueous solution using nanoscale zero-valent iron/H2O2/US. Desalination and Water Treatment, 57, 13878–13886.CrossRefGoogle Scholar
  17. Gupta, V. K., Fakhri, A., Agarwal, S., & Azad, M. (2017). Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic. International Journal of Biological Macromolecules, 103, 1–7.CrossRefGoogle Scholar
  18. Ho, Y. S., & McKay, G. (2003). Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38, 1047–1061.CrossRefGoogle Scholar
  19. ICH Q2A. (2009). Validation of analytical procedures: text and methodology. European Medicine Agency Web Accessed 20 June 2017.
  20. ICH Q2B. (2009). Validation of analytical procedures. European Medicine Agency Web Accessed 20 June 2017.
  21. Katsou, E., Malamis, S., Tzanoudaki, M., Haralambous, K. J., & Loizidou, M. (2011). Regeneration of natural zeolitic polluted by lead and zinc in wastewater treatment systems. Journal of Hazardous Materials, 189, 773–786.CrossRefGoogle Scholar
  22. Kuleyin, A. (2007). Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials, 144, 307–315.CrossRefGoogle Scholar
  23. Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504.CrossRefGoogle Scholar
  24. Leyva-Ramos, R., Medellín-Castillo, N. A., Guerrero-Coronado, R. M., Berber-Mendoza, M. S., Aragón Piña, A., & Azuara, J. A. (2005). Intercambio iónico de plata (I) en solución acuosa sobre clinoptilolita. Revista Internacional de Contaminación Ambiental, 4, 193–200.Google Scholar
  25. Li, Z., & Bowman, R. S. (1997). Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environmental Science & Technology, 31, 2407–2412.CrossRefGoogle Scholar
  26. Li, Y., Hu, X., Zhang, Y., Zhao, Q., Ning, P., & Tian, S. (2017). Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration. Chemical Engineering Journal, 334(15), 1214–1221.Google Scholar
  27. Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J. M., & Zhang, T. (2015). Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal, 503(9), 2490–2502.CrossRefGoogle Scholar
  28. Li, Y., Zhu, G., Jern-Ng, W., & Keat-Tan, S. (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Science of Total Environment, 468-469, 908–932.CrossRefGoogle Scholar
  29. Lonappan, L., Rouissi, T., Kaur Brar, S., Verma, M., & Surampalli, R. Y. (2018). An insight into the adsorption of diclofenac on different biochars: mechanisms, surface chemistry, and thermodynamics. Bioresource Technology, 249, 386–394.CrossRefGoogle Scholar
  30. Lv, Y. K., Wang, L. M., Yan, S. L., Wang, X. H., & Sun, H. W. (2012). Synthesis and characterization of molecularly imprinted poly(methacrylic acid)/silica hybrid composite materials for selective recognition of lincomycin in aqueous media. Journal of Applied Polymer Science, 126, 1631–1636.CrossRefGoogle Scholar
  31. Mumton, F., & Ormsby, C. (1976). Morphology of zeolites in sedimentary rocks by scanning electron microscopy. Clays and Clay Minerals, 24, 1–23.CrossRefGoogle Scholar
  32. Noori-Sepehr, M., Al-Musawi, T., Ghahramani, E., Kazemian, H., & Zarrabi, M. (2016). Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arabian Journal Chemistry, 10, 611–623.CrossRefGoogle Scholar
  33. Perego, C., Bagatin, R., Tagliabue, M., & Vignola, R. (2013). Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous and Mesoporous Materials, 166, 37–49.CrossRefGoogle Scholar
  34. Reeve, P. J., & Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: a review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. Journal of Environmental Management, 205, 253–261.CrossRefGoogle Scholar
  35. Salem, T., Lin, X., & Quiang, D. (2013). Synthesized magnetic nanoparticles coated zeolitic for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere, 93, 2076–2085.CrossRefGoogle Scholar
  36. Solache-Ríos, M. J., Villalba-Coyote, R., & Díaz-Nava, M. C. (2010). Sorption and desorption of remazol yellow by a Fe-zeolitic tuff. Journal Mexican Chemistry Society, 54(1), 59–68.Google Scholar
  37. Sprynskyy, M., Golembiewski, R., Trykowski, G., & Buszewski, B. (2010). Heterogeneity and hierarchy of clinoptilolite porosity. Journal of Physics and Chemistry Solids, 71, 1269–1277.CrossRefGoogle Scholar
  38. USP (United States Pharmacopeia) 40/National Formulary (NF) 35. (2017). Food and Drug Administration (FDA), USA.Google Scholar
  39. Vertilicchi, P., & Zambello, E. (2014). How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Science of the Total Environment, 470-471, 1281–1306.CrossRefGoogle Scholar
  40. Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148, 354–364.CrossRefGoogle Scholar
  41. Watkinson, A. J., Murby, E. J., & Constanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research, 41, 4164–4176.CrossRefGoogle Scholar
  42. Wu, C., Spongberg, A. L., & Witter, J. D. (2009). Sorption and biodegradation of selected antibiotics in biosolids. Journal of environmental Science and Health Part A, 44, 454–461.CrossRefGoogle Scholar
  43. Wynalda, M. A., Matthew-Hutzler, J., Koets, M. D., Podoll, T., & Wienkers, L. C. (2003). In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metabolism and Disposition, 31(7), 878–887.CrossRefGoogle Scholar
  44. Zhang, J., Li, W., Chen, J., Qi, W., Wang, F., & Zhou, Y. (2018). Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems. Chemosphere. Scholar
  45. Zhu, A., Zhu, W., Wu, Z., & Jing, Y. (2003). Recovery of clindamycin from fermentation wastewater with nanofiltration membranes. Water Research, 37, 3718–3732.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaInstituto Nacional de Investigaciones Nucleares (ININ)OcoyoacacMexico
  2. 2.Facultad de Química, Laboratorio de Análisis InstrumentalUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations