Increasing and Decreasing Nitrogen and Phosphorus Trends in Runoff from Drained Peatland Forests—Is There a Legacy Effect of Drainage or Not?

  • Mika NieminenEmail author
  • Sakari Sarkkola
  • Seppo Hellsten
  • Hannu Marttila
  • Sirpa Piirainen
  • Tapani Sallantaus
  • Ahti Lepistö


A recent study on nitrogen (N) and phosphorus (P) exports from drained peatland forests reported increasing concentrations over long time since their initial drainage. Concurrently, some other studies have suggested decreasing trends from drained peatland forests, particularly for P. To evaluate these contradictory findings, we re-analyzed past data and reviewed the literature related to temporal N and P concentration trends in runoff from drained peatland forests. Review of literature indicated that decreasing trends are found particularly in sites where initial P concentrations are high (> 50 μg P l−1), plausibly because of relatively recent fertilization and drainage operations. Decreasing N trends have been found in sites where ditch cleaning temporarily decreased concentrations. Increasing N trends have occurred in sites, where initial concentrations have been low, close to the levels found in pristine peatlands. Complementing past published data with additional data from sites with no recent forestry operations indicated that N concentrations correlated positively with drainage age (years since initial drainage), percentage of drained peatlands in the catchment (drainage proportion), and southern location of the study site. P concentrations correlated most strongly with drainage age. Our study indicated that four factors, in particular, need to be considered when interpreting nutrient concentration trends in runoff from drained peatlands: 1) management history, 2) drainage age, 3) drainage proportion, and 4) site location. Our results supported earlier conclusions in that the estimates which ignore the legacy effect of drainage remarkably underestimate the true impact of forestry on water courses in intensively drained regions.


Drainage Management history Nutrient exports Peatlands Water quality 


  1. Ahtiainen, M., & Huttunen, P. (1999). Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environment Research, 4, 101–114.Google Scholar
  2. Andersson, L., & Lepistö, A. (2000). Annual variability of nitrogen concentrations and exports from forest catchments: a consequence of climatic variability, sampling strategies or human interference? Boreal Environment Research, 5, 221–233.Google Scholar
  3. Åström, M., Aaltonen, E.-K., & Koivusaari, J. (2001a). Impact of ditching in a small forested catchment on concentrations of suspended material, organic carbon, hydrogen ions and metals in stream water. Aquatic Geochemistry, 57, 57–73.CrossRefGoogle Scholar
  4. Åström, M., Aaltonen, E.-K., & Koivusaari, J. (2001b). Effect of ditching operations on stream-water chemistry in a boreal catchment. Science of the Total Environment, 279, 117–129.CrossRefGoogle Scholar
  5. Behrendt, H., & Opitz, D. (2000). Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia, 410, 111–122.CrossRefGoogle Scholar
  6. Ecke, F. (2009). Drainage ditching at the catchment scale affects water quality and macrophyte occurrence in Swedish lakes. Freshwater Biology, 59, 119–126. Scholar
  7. Finér, L., Mattsson, T., Joensuu, S., Koivusalo, H., Laurén, A., Makkonen, T., et al. (2010). Metsäisten valuma-alueiden vesistökuormituksen laskenta (A method for calculating nitrogen, phosphorus and sediment load from forested catchments). Suomen ympäristö, 10/2010. 33 pp. (in Finnish).Google Scholar
  8. Finnish Statistical Yearbook of Forestry (2014). Suomen virallinen tilasto: Maa-, metsä- ja kalatalous.Google Scholar
  9. Holden, J., Gascoign, M., & Bosanko, N. R. (2007). Erosion and natural revegetation associated with surface land drains in upland peatlands. Earth Surface Processes and Landforms, 32, 1547–1557. Scholar
  10. Joensuu, S., Ahti, E., & Vuollekoski, M. (2001a). Discharge water quality from old ditch networks in Finnish peatland forests. Suo, 52, 1–15.Google Scholar
  11. Joensuu, S., Ahti, E., & Vuollekoski, M. (2001b). Long-term effects of maintaining ditch networks on runoff quality. Suo, 52, 17–28.Google Scholar
  12. Joensuu, S., Ahti, E., & Vuollekoski, M. (2002). Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scandinavian Journal of Forest Research, 17, 238–247.CrossRefGoogle Scholar
  13. Joensuu, S., Vuollekoski, M., & Karosto, K. (2006). Kunnostusojituksen pitkäaikaisvaikutuksia. In K. Kenttämies & T. Mattsson (Eds.), Metsätalouden vesistökuormitus. MESUVE-projektin loppuraportti (pp. 83–90) Suomen ympäristö, 816. (in Finnish).Google Scholar
  14. Karjalainen, S. M., Marttila, H., & Hellsten, S. (Eds.) (2015). Uusia menetelmiä turvemaiden käytön vesistövaikutusten arviointiin latvavesistöissä. BioTar-ohjelman loppuraportti. Reports of the Finnish Environment Institute 11/2015. 140 p. (in Finnish).Google Scholar
  15. Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S., & Sallanataus, T. (2006). Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Science, 68, 453–468. Scholar
  16. Koskinen, M., Tahvanainen, T., Sarkkola, S., Memberu M. W., Laurén, A., Sallantaus, T., et al. (2017). Restoration of nutrient-rich forestry-drained peatlands poses a risk for high exports of dissolved organic carbon, nitrogen, and phosphorus. Science of the Total Environment, 586, 858–869.
  17. Lepistö, A., Kortelainen, P., & Mattsson, T. (2008). Increased organic C and N leaching in a northern boreal river basin in Finland. Global Biogoechemical Cycles, 22, GB3029. Scholar
  18. Mattsson, T., Finér, L., Kortelainen, P., & Sallantaus, T. (2003). Brook water quality and background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil Pollution, 147, 275–297.CrossRefGoogle Scholar
  19. Memberu, M. W., Marttila, H., Tahvanainen, T., Kotiaho, J. S., Hokkanen, R., Klöve, B., et al. (2017). Changes in pore water quality after peatland restoration: assessment of a large–scale, replicated before-after-control-impact study in Finland. Water Resources Research, 53(10), 8327–8343.CrossRefGoogle Scholar
  20. Munir, T. M., Khadka, B., Xu, B., & Strack, M. (2017). Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. Ecohydrology, 10. 15 p.
  21. Nieminen, M., Ahti, E., Koivusalo, H., Mattsson, T., Sarkkola, S., & Laurén, A. (2010). Export of suspended solids and dissolved elements from peatland areas after ditch network maintenance in south-central Finland. Silva Fennica, 44, 39–49.CrossRefGoogle Scholar
  22. Nieminen, M., Palviainen, M., Sarkkola, S., Laurén, A., Marttila, H., & Finér, L. (2017a). A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests. Ambio, 2017.
  23. Nieminen, M., Sallantaus, T., Ukonmaanaho, L., Nieminen, T. M., & Sarkkola, S. (2017b). Nitrogen and phosphorus concentrations in discharge from drained peatland forests are increasing. Science of the Total Environment, 609, 974–981. Scholar
  24. Paavilainen, E., & Päivänen, J. (1995). Peatland forestry: ecology and principles, Ecological studies 111. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  25. Päivänen, J., & Hånell, B. (2012). Peatland ecology and forestry – a sound approach. University of Helsinki, Department of Forest Sciences Publications, 3. 267 pp.Google Scholar
  26. Piirainen, S., Domisch, T., Moilanen, M., & Nieminen, M. (2013). Long-term effects of ash fertilization on runoff water quality from drained peatland forests. Forest Ecology and Management, 287, 53–66.CrossRefGoogle Scholar
  27. Prévost, M., Plamondon, A. P., & Belleau, P. (1999). Effects of drainage of a forested peatland on water quality and quantity. Journal of Hydrology, 214, 130–143. Scholar
  28. Rääpysjärvi, J., Hämäläinen, H., & Aroviita, J. (2016a). Macrophytes in boreal streams: characterizing and predicting native occurrence and abundance to assess human impact. Ecological Indicators, 64, 309–318. Scholar
  29. Rääpysjärvi, J., Karjalainen, S. M., Karttunen, K., Kuoppla, M., & Aroviita, J. (2016b). Metsätalouden vaikutukset purojen ja jokien biologiseen tilaan – MEBI -hankkeen tulokset. Suomen ympäristökeskuksen raportteja, 20/2016. 32 pp. (in Finnish).Google Scholar
  30. Ramchunder, S. J., Brown, L. E., & Holden, J. (2009). Environmental effects of drainage, drain-blocking and prescribed vegetation burning in UK upland peatlands. Progress in Physical Geography, 33, 49–79. Scholar
  31. Sarkkola, S., Nieminen, M., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., et al. (2012). Trends in concentrations and export of nitrogen in boreal forest streams. Boreal Environment Research, 17, 85–101.Google Scholar
  32. Sikström, U., & Hökkä, H. (2016). Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fennica, 50. 29 pp. doi:
  33. Tattari, S., Koskiaho, J., Kosunen, M., Lepistö, A., Linjama, J., & Puustinen, M. (2017). Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010—can the efficiency of undertaken water protection measures seen? Environmental Monitoring and Assessment, 189, 95. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mika Nieminen
    • 1
    Email author
  • Sakari Sarkkola
    • 1
  • Seppo Hellsten
    • 2
  • Hannu Marttila
    • 3
  • Sirpa Piirainen
    • 4
  • Tapani Sallantaus
    • 2
  • Ahti Lepistö
    • 2
  1. 1.Natural Resources Institute FinlandHelsinkiFinland
  2. 2.Finnish Environment InstituteHelsinkiFinland
  3. 3.Water Resources and Environmental Engineering Research UnitUniversity of OuluOuluFinland
  4. 4.Natural Resources Institute FinlandJoensuuFinland

Personalised recommendations