Efficient Removal of Escherichia coli from Ballast Water Using a Combined High-Gradient Magnetic Separation-Ultraviolet Photocatalysis (HGMS-UV/TiO2) System

  • Zheng Lu
  • Kun Zhang
  • Yue Shi
  • Yanli Huang
  • Xixi Wang


A new synergistic method was proposed to remove Escherichia coli by using high-gradient magnetic separation (HGMS)-ultraviolet titanium oxide photocatalysis (UV/TiO2). Compared with sole HGMS, UV radiation, UV/TiO2, and HGMS-UV, the combined HGMS-UV/TiO2 significantly increased the bacterial removal rate. After treatment of 6 min, bacterial removal rate for HGMS-UV/TiO2 was 5.25 log, and E. coli was unlikely to photoreactivate or dark repair. In addition, HGMS-UV/TiO2 treatment led to rapid increase of malondialdehyde (MDA) concentration, severe inhibition of superoxide dismutase (SOD) activity, and massive leakages of intracellular K+ and protein, proving the process caused more damage to E. coli cell structure. For HGMS-UV/TiO2 treatment, seawater turbidity did not significantly affect the bacterial removal rate, and 10 mg L−1 humic acid could largely reduce the bacterial removal rate. Totally, the HGMS-UV/TiO2 could be effectively employed to treat ballast water with less organic matter. Despite the limitation, this novel method has many potential applications in the treatment of ballast water.


Ballast water Escherichia coli HGMS-UV/TiO2 process Bactericidal mechanism 


Funding Information

This research was financially supported by the National Key Research and Development Program of China (2017YFC1404605), the Natural Science Foundation of China (Grant No. 51579049 and 51509044), and the High Tech Ship Program.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Bustos, Y. A., Vaca, M., López, R., & Torres, L. G. (2010). Disinfection of a wastewater flow treated by advanced primary treatment using O3, UV and O3/UV combinations. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering, 45(13), 1715–1719.CrossRefGoogle Scholar
  2. Chen, X., Tian, Y., Zhang, H., Yang, H., et al. (2011). Surface modification of nano magnetic seeds and the aqueous absorbing properties. Science & Technology Review, 29(3), 57–61.Google Scholar
  3. Ding, C. S., Qin, S. L., Zheng, Y. F., Miao, J., & Fu, J. (2010). Preparation and characterization of immobilized TiO2 and its photocatalytic activities. Journal of China University of Mining & Technology, 39(3), 431–436.Google Scholar
  4. Du, H., Zhang, X. F., Zhang, Z. T., et al. (2016). Input characteristics and risk analysis of ballast water in entry ships at China’s offshore sea area. Marine Science Bulletin, 35(1), 112–120.Google Scholar
  5. Dunlop, P. S. M., Byrne, J. A., Manga, N., & Eggins, B. R. (2002). The photocatalytic removal of bacterial pollutants from drinking water. Journal of Photochemistry and Photobiology A: Chemistry, 148(1), 355–363.CrossRefGoogle Scholar
  6. Haaken, D., Schmalz, V., Dittmar, T., et al. (2013). Limits of UV disinfection: UV/electrolysis hybrid technology as a promising alternative for direct reuse of biologically treated wastewater. Journal of Water Supply: Research and Technology, 62(7), 442–451.CrossRefGoogle Scholar
  7. Hebei Maritime Safety Administration of People’s Republic of China. (2015). Management and implementation of ballast water (pp. 1–124). Shanghai: Shanghai Jiao Tong University Press.Google Scholar
  8. Horiuchi, S., Ishizaki, Y., Okuno, K., Ano, T., & Shoda, M. (2001). Drastic high magnetic field effect on suppression of Escherichia coli death. Bioelectrochemistry, 53(2), 149–153.CrossRefGoogle Scholar
  9. Hu, C., Guo, J., Qu, J., & Hu, X. (2007). Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation. Langmuir, 23(9), 4982–4987.CrossRefGoogle Scholar
  10. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry & Photobiology A Chemistry, 106(1), 51–56.CrossRefGoogle Scholar
  11. Koivunen, J., & Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 39(8), 1519–1526.CrossRefGoogle Scholar
  12. Kubacka, A., Muñoz-Batista, M. J., Ferrer, M., & Fernández-García, M. (2013). UV and visible light optimization of anatase TiO2 antimicrobial properties: Surface deposition of metal and oxide (Cu, Zn, Ag) species. Applied Catalysis B Environmental, 140, 680–690.CrossRefGoogle Scholar
  13. Liao, X. S., Wang, X., Zhao, K. H., et al. (2007). Study on the influence of cyanobacterial growth by UV-C photocatalytic oxidation with nanometric TiO2. Journal of Wuhan Botanical Research, 25(5), 457–461.Google Scholar
  14. Mamane, H., Shemer, H., & Linden, K. G. (2007). Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. Journal of Hazardous Materials, 146(3), 479–486.CrossRefGoogle Scholar
  15. Naik, K., Chatterjee, A., Prakash, H., et al. (2013). Mesoporous TiO2 nanoparticles containing Ag ion with excellent antimicrobial activity at remarkable low silver concentrations. Journal of Biomedical Nanotechnology, 9(4), 664–673.CrossRefGoogle Scholar
  16. Nebot, S. E., Salcedo, D. I., Andrade Balao, J. A., et al. (2007). Modelling of reactivation after UV disinfection: effect of UV-C dose on subsequent photoreactivation and dark repair. Water Research, 41(14), 3141–3151.CrossRefGoogle Scholar
  17. Stehouwer, P. P., van Slooten, C., & Peperzak, L. (2013). Microbial dynamics in acetate-enriched ballast water at different temperatures. Ecotoxicology & Environmental Safety, 96(6), 93–98.CrossRefGoogle Scholar
  18. Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z., & Li, C. (2010). Photocatalytic oxidation of gaseous formaldehyde on TiO2: an in situ DRIFTS study. Catalysis Letters, 137, 239–246.CrossRefGoogle Scholar
  19. Sun, W., Li, Z., Wu, S. H., & Jia, S. Y. (2006). Application of magnetic separating technology in polluted water treatment. Journal of Magnetic Materials & Devices, 37(4), 6–10.Google Scholar
  20. Sunada, K., Watanabe, T., & Hashimoto, K. (2003). Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry & Photobiology A Chemistry, 156(1), 227–233.CrossRefGoogle Scholar
  21. Sung-Suh, H. M., Choi, J. R., Hah, H. J., Koo, S. M., & Bae, Y. C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry & Photobiology A Chemistry, 163(1), 37–44.CrossRefGoogle Scholar
  22. Tang, Z., Butkus, M. A., & Xie, Y. F. (2009). Enhanced performance of crumb rubber filtration for ballast water treatment. Chemosphere, 74(10), 1396–1399.CrossRefGoogle Scholar
  23. Tao, P., Xu, Y., Zhou, Y., Song, C., et al. (2017). Coal-based carbon membrane coupled with electrochemical oxidation process for the enhanced microalgae removal from simulated ballast water. Water, Air, & Soil Pollution, 228(11), 421.CrossRefGoogle Scholar
  24. United States Environmental Protection Agency (2010). Environmental Technology Verification Program (ETV) generic protocol for the verification of ballast water treatment technology, version version 5.1, Report number EPA/600/R-10/146. Washington, DC, USA.Google Scholar
  25. Wang, G. S., Hsieh, S. T., & Hong, C. S. (2000). Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide. Water Research, 34(15), 3882–3887.CrossRefGoogle Scholar
  26. Wu, D., You, H., Jin, D., & Li, X. (2011). Enhanced inactivation of Escherichia coli with Ag-coated TiO2 thin film under UV-C irradiation. Journal of Photochemistry & Photobiology A Chemistry, 217(1), 177–183.CrossRefGoogle Scholar
  27. Yang, H., An, T. C., Li, G. Y., et al. (2010). Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of β-blockers. Journal of Hazardous Materials, 179, 834–839.CrossRefGoogle Scholar
  28. Ying, T. Y., Yiacoumi, S., & Tsouris, C. (2000). High-gradient magnetically seeded filtration. Chemical Engineering Science, 55(6), 1101–1113.CrossRefGoogle Scholar
  29. Zhang, C. S., Zhang, K. F., & Li, D. Q. (2003). A test of treatment of slightly-polluted water using magnetic filter with high gradient. Industrial Water & Wastewater, 6, 26–28.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zheng Lu
    • 1
  • Kun Zhang
    • 1
  • Yue Shi
    • 1
  • Yanli Huang
    • 1
  • Xixi Wang
    • 1
  1. 1.College of Power and Energy EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations