Advertisement

Estimating the Transverse Mixing Coefficient in Laboratory Flumes and Natural Rivers

  • Wenxin Huai
  • Haoran Shi
  • Zhonghua Yang
  • Yuhong Zeng
Article
  • 115 Downloads

Abstract

Transverse mixing is a complex process and important in understanding the transport of pollution in rivers. This study presents a genetic programming (GP)-based model for estimating the transverse mixing coefficient (TMC) in flumes and rivers. More than a hundred of data points from previous studies, including datasets on laboratory straight rectangular flumes and field measurements in natural rivers, are collected and used to develop the final formulae for estimating TMC. During the analysis, TMC is separated into the transverse turbulent diffusion coefficient and the transverse dispersion coefficient given that they represent two different processes. Before formula optimization and search are performed using GP software, the target formulae are semi-defined to reduce search time and ensure the physical basement of the final formulae. The model presented in this study exhibits good improvement in terms of accuracy and physical meaning compared with existing equations.

Keywords

Transverse mixing coefficient Laboratory straight rectangular flumes Natural rivers Genetic programming 

Notes

Funding Information

This work was financially supported by the Natural Science Foundation of China (Nos. 51439007, 11672213, and 11372232).

References

  1. Aghababaei, M., Etemad-Shahidi, A., Jabbari, E., Taghipour, M., 2017. Estimation of transverse mixing coefficient in straight and meandering streams. Water Resources Management (10), 1–19. doi:  https://doi.org/10.1007/s11269-017-1708-4
  2. Ahmad, Z. (2007). Two-dimensional mixing of pollutants in open channels. A technical report submitted to DST, New Delhi.Google Scholar
  3. Azamathulla, H. M., & Ahmad, Z. (2012). Gene-expression programming for transverse mixing coefficient. Journal of Hydrology, 434-435(3), 142–148.  https://doi.org/10.1016/j.jhydrol.2012.02.018.CrossRefGoogle Scholar
  4. Azamathulla, H. M., & Ghani, A. A. (2011). Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resources Management, 25(6), 1537–1544.  https://doi.org/10.1007/s11269-010-9759-9.CrossRefGoogle Scholar
  5. Baek, K. O., & Seo, I. W. (2013). Empirical equation for transverse dispersion coefficient based on theoretical background in river bends. Environmental Fluid Mechanics, 13(5), 465–477.  https://doi.org/10.1007/s10652-013-9276-5.CrossRefGoogle Scholar
  6. Bansal, M.K., 1970. Dispersion and rearation in natural stream. Thesis de doctorat, Univesite de Kansas. Laurence, Kansas.Google Scholar
  7. Beltaos, S. (1979). Transverse mixing in natural streams. Canadian Journal of Civil Engineering, 6(6), 575–591.  https://doi.org/10.1139/l79-070.CrossRefGoogle Scholar
  8. Beltaos, S. (1980). Transverse mixing tests in natural streams. Journal of the Hydraulics Division, 106(10), 1607–1625.Google Scholar
  9. Beltaos, S., & Day, T. J. (1978). A field study of longitudinal dispersion. Canadian Journal of Civil Engineering, 5(4), 572–585.  https://doi.org/10.1139/l78-062.CrossRefGoogle Scholar
  10. Besio, G., Stocchino, A., Angiolani, S., & Brocchini, M. (2012). Transversal and longitudinal mixing in compound channels. Water Resources Research, 48(12), 1484–1516.  https://doi.org/10.1029/2012WR012316.CrossRefGoogle Scholar
  11. Boxall, J. B., & Guymer, I. (2003). Analysis and prediction of transverse mixing coefficients in natural channels. Journal of Hydraulic Engineering, 129(2), 129–139.  https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(129).CrossRefGoogle Scholar
  12. Bruno, M. S., Muntisov, M., & Fischer, H. B. (1990). Effect of buoyancy on transverse mixing in streams. Journal of Hydraulic Engineering, 116(12), 1484–1494.  https://doi.org/10.1061/(ASCE)0733-9429(1990)116:12(1484).CrossRefGoogle Scholar
  13. Chau, K. W. (2000). Transverse mixing coefficient measurements in an open rectangular channel. Advances in Environmental Research, 4(4), 287–294.  https://doi.org/10.1016/S1093-0191(00)00028-9.CrossRefGoogle Scholar
  14. Elder, J. W. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5, 544–560.  https://doi.org/10.1017/S0022112059000374.CrossRefGoogle Scholar
  15. Engelund, F. (1969). Dispersion of floating particles in uniform channel flow. Journal of the Hydraulics Division. ASCE, 95, 1149–1162.Google Scholar
  16. Engmann, JEO, (1974). Transverse mixing characteristics of open and ice-covered channel flows. PhD Thesis, University of Alberta.Google Scholar
  17. Engmann, J. E. O., & Kellerhals, R. (1974). Transverse mixing in an ice-covered river. Water Resources Research, 10(4), 775–784.  https://doi.org/10.1029/WR010i004p00775.CrossRefGoogle Scholar
  18. Fischer, H. B. (1969). The effect of bends on dispersion in streams. Water Resources Research, 5(2), 496–506.  https://doi.org/10.1029/WR005i002p00496.CrossRefGoogle Scholar
  19. Fischer, H. B. (1973). Longitudinal dispersion and turbulent mixing in open-channel flow. Annual Review of Fluid Mechanics, 5(1), 59–78.  https://doi.org/10.1146/annurev.fl.05.010173.000423.CrossRefGoogle Scholar
  20. Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., & Brooks, N. H. (2013). Mixing in inland and coastal waters. Elsevier.Google Scholar
  21. Goldstein, E. B., & Coco, G. (2014). A machine learning approach for the prediction of settling velocity. Water Resources Research, 50(4), 3595–3601.  https://doi.org/10.1002/2013WR015116.CrossRefGoogle Scholar
  22. Hasan, M. M., Sharma, A., Johnson, F., Mariethoz, G., & Seed, A. (2014). Correcting bias in radar Z–R, relationships due to uncertainty in point rain gauge networks. Journal of Hydrology, 519(519, Part B), 1668–1676.  https://doi.org/10.1016/j.jhydrol.2014.09.060.CrossRefGoogle Scholar
  23. Henderson, F. M. (1966). Open channel flow. New York: Macmillan.Google Scholar
  24. Holley, E. R., & Abraham, G. (1973). Laboratory studies on transverse mixing in rivers. Journal of Hydraulic Research, 11(3), 219–253.  https://doi.org/10.1080/00221687309499775.CrossRefGoogle Scholar
  25. Holley, E. R., & Abraham, G. (1975). Field tests on transverse mixing in rivers. Advanced Materials, 13(21), 1624–1627.Google Scholar
  26. Holly, E. R., 1971. Transverse mixing in rivers. Report No. S132, Delft Hydraulics Laboratory, Delft, The Netherlands.Google Scholar
  27. Holly, F. M., & Nerat, G. (1983). Field calibration of stream-tube dispersion model. Journal of Hydraulic Engineering, 109(11), 1455–1470.  https://doi.org/10.1061/(ASCE)0733-9429(1983)109:11(1455).CrossRefGoogle Scholar
  28. Huai, W., Shi, H., Song, S., Ni, S., 2017. A simplified method for estimating the longitudinal dispersion coefficient in ecological channels with vegetation. Ecological Indicators (in press) doi:  https://doi.org/10.1016/j.ecolind.2017.05.015
  29. Jeon, T. M., Baek, K. O., & Seo, I. W. (2007). Development of an empirical equation for the transverse dispersion coefficient in natural streams. Environmental Fluid Mechanics, 7(4), 317–329.  https://doi.org/10.1007/s10652-007-9027-6.CrossRefGoogle Scholar
  30. Kalinske, A. A., & Pien, C. L. (1944). Eddy diffusion. Industrial and Engineering Chemistry, 36, 220–223.  https://doi.org/10.1021/ie50411a008.CrossRefGoogle Scholar
  31. Lau, Y. L., & Krishnappan, B. G. (1977). Transverse dispersion in rectangular channels. Journal of the Hydraulics Division, 103(10), 1173–1189 http://cedb.asce.org/cgi/WWWdisplay.cgi?7673.Google Scholar
  32. Lau, Y. L., & Krishnappan, B. G. (1981). Modelling transverse mixing in natural streams. Journal of the Hydraulics Division, 107(2), 209–226.Google Scholar
  33. Long, T., Guo, J., Feng, Y., & Huo, G. (2002). Modulus of transverse diffuse simulation based on artificial weural network. Chongqing Environmental Science, 24(2), 25–28 (in Chinese).Google Scholar
  34. Miller, A. C., & Richardson, E. V. (1974). Diffusion and dispersion in open channel flow. Journal of the Hydraulics Division, ASCE, 100, 159–171 http://cedb.asce.org/cgi/WWWdisplay.cgi?7400793.Google Scholar
  35. Nepf, H. M., Fagherazzi, S., Marani, M., Blum, L. K., 2004. Vegetated flow dynamics. The ecogeomorphology of tidal marshes. American Geophysical Union doi:  https://doi.org/10.1029/CE059p0137
  36. Nezu, I., W. Rodi., 1985. Experimental study on secondary currents in open channel flows. in Proceedings of the 21st Congress, vol. 2, pp. 115–119, IAHR, Madrid.Google Scholar
  37. Nokes, R.I.. (1986). Problems in turbulent dispersion, PhD Thesis, University of Canterbury, Christchurch. https://ir.canterbury.ac.nz/handle/10092/7711
  38. Okoye, J. K., 1970. Characteristics of transverse mixing in open-channel flows. California Institute of TechnologyGoogle Scholar
  39. Pilechi, A., Mohammadian, A., Rennie, C. D., & Zhu, D. Z. (2016). Efficient method for coupling field data and numerical modeling for the estimation of transverse mixing coefficients in meandering rivers. Journal of Hydraulic Engineering, 142(6), 04016009.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0001116.CrossRefGoogle Scholar
  40. Prandtl, L. (1952). Uber die ausgebildete Turbulenz. ZAMM, 5, 136–139.Google Scholar
  41. Prych, E. A., 1970. Effects of density differences on lateral mixing in open-channel flows. California Institute of Technology.Google Scholar
  42. Rutherford, J. C., 1994. River mixing. John Wiley & Son Ltd.Google Scholar
  43. Sayre, W. W., 1979. Shore-attached thermal plumes in rivers. In: Shen HW (ed) Modelling in rivers. Wiley-Interscience, London, pp 15.1–15.44.Google Scholar
  44. Sayre, W. W., Chamberlain, A. R., 1964. Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel. US Geol. Surv. Circ. No. 484. http://pubs.er.usgs.gov/publication/cir484
  45. Sayre, W.W., Yeh, T..1973. Transverse mixing characteristics of the Missouri River downstream from the Cooper Nuclear Station, Rep. No.145, University of Iowa.Google Scholar
  46. Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 81–85.  https://doi.org/10.1126/science.1165893.CrossRefGoogle Scholar
  47. Schmidt, M., H. Lipson., 2013. Eureqa (version 0.99.5 beta) [software]. [Available at www.eureqa.com.]
  48. Seo, I., Baek, K. O., & Jeon, T. M. (2006). Analysis of transverse mixing in natural streams under slug tests. Journal of Hydraulic Research, 44(3), 350–362.  https://doi.org/10.1080/00221686.2006.9521687.CrossRefGoogle Scholar
  49. Sharma, H., & Ahmad, Z. (2014). Transverse mixing of pollutants in streams: a review. Canadian Journal of Civil Engineering, 41(5), 472–482.  https://doi.org/10.1139/cjce-2013-0561.CrossRefGoogle Scholar
  50. Sullivan, P. J., 1968. Dispersion in a turbulent shear flow. Thesis presented to Churchill College, University of Cambridge, at Cambridge, England, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648092
  51. Tabatabaei, S. H., Heidarpour, M., Ghasemi, M., Hoseinipour, E. Z., 2013. Transverse mixing coefficient on dunes with vegetation on a channel wall. World Environmental and Water Resources Congress (pp.1903–1911). doi:  https://doi.org/10.1061/9780784412947.186
  52. Tennekes, H., Lumley, J., 1972. A first course in turbulence. MIT Press.Google Scholar
  53. Tinoco, R. O., Goldstein, E. B., & Coco, G. (2015). A data-driven approach to develop physically sound predictors: application to depth-averaged velocities on flows through submerged arrays of rigid cylinders. Water Resources Research, 51(2), 1247–1263.  https://doi.org/10.1002/2014WR016380.CrossRefGoogle Scholar
  54. Wang, Y. F., Huai, W. X., Wang, W. J., 2016. Physically sound formula for longitudinal dispersion coefficients of natural rivers. Journal of Hydrology, 544. doi:  https://doi.org/10.1016/j.jhydrol.2016.11.058
  55. Webel, G., & Schatzmann, M. (1984). Transverse mixing in open channel flow. Journal of Hydraulic Engineering, 110(4), 423–435.  https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(423).CrossRefGoogle Scholar
  56. Yang, S. Q., Tan, S. K., & Wang, X. K. (2012). Mechanism of secondary currents in open channel flows. Journal of Geophysical Research Earth Surface, 117, F04014.  https://doi.org/10.1029/2012JF002510.CrossRefGoogle Scholar
  57. Yotsukura, N., Cobb, E. D., 1972. Transverse diffusion of solutes in natural streams. Center for Integrated Data Analytics Wisconsin Science Center.Google Scholar
  58. Yotsukura, N., & Sayre, W. W. (1976). Transverse mixing in natural channels. Water Resources Research, 12(4), 695–704.  https://doi.org/10.1029/WR012i004p00695.CrossRefGoogle Scholar
  59. Yotsukura, N., Fischer, H. B., Sayre, W. W., 1970. Measurement of mixing characteristics of the Missouri river between Sioux city, Iowa, and Plattsmouth, Nebraska. Water Supply Paper. No. 1899-G, U.S.Geological Survey.Google Scholar
  60. Zeng, Y., & Huai, W. (2014). Estimation of longitudinal dispersion coefficient in rivers. Journal of Hydro-Environment Research, 8(1), 2–8.  https://doi.org/10.1016/j.jher.2013.02.005.CrossRefGoogle Scholar
  61. Sayre, W. W., Chang, F. M., 1968. A laboratory investigation if open-channel dispersion processes for dissolved, suspended, and floating dispersants. U.S. Geological Survey Proffessional Paper 433-E. http://pubs.er.usgs.gov/publication/pp433EGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina

Personalised recommendations