Advertisement

Development of a Chemosensor for the In Situ Monitoring of Thallium in the Water Network

  • Monica Puccini
  • Lorenzo Guazzelli
  • Andrea Luca Tasca
  • Andrea Mezzetta
  • Christian Silvio Pomelli
Article

Abstract

Thallium is an emerging contaminant, which can be retained in scale encrustation within the pipeline and then released to drinking water. It is included in the Priority Pollutant List of the U.S. EPA. In this study, a sample from the water pipeline of Pietrasanta (Italy), affected by the contamination of thallium, is characterized by SEM-EDS, TGA, and FT-IR. Fluorescence spectroscopy is then proposed as the optimal technique for the detection of the contaminant. The functionality of a previously reported fluorescent calix[4]arene-based chemosensor is verified first on a standard solution of thallium nitrate and then on the sample under investigation. The quenching of the fluorescence of the sensor during the complexation of thallium is confirmed, identifying an ON-OFF sensor with high sensitivity, able to detect concentrations as low as 10−6 M and with high potential of development for the in situ and fast monitoring of the pollutant in the water network.

Keywords

Thallium Water contamination Chemosensor Fluorescence 

Notes

Funding Information

The study is financially supported by Autorità Idrica Toscana (Florence, Italy).

References

  1. Biagioni, C., D’Orazio, M., Lepore, G. O., d’Acapito, F., & Vezzoni, S. (2017). Thallium-rich rust scales in drinkable water distribution systems: a case study from northern Tuscany, Italy. Science of the Total Environment, 587–588, 491–501.CrossRefGoogle Scholar
  2. Campanella, B., Casiot, C., Onor, M., Perotti, M., Petrini, R., & Bramanti, E. (2017). Thallium release from acid mine drainages: speciation in river and tap water from Valdicastello mining district (northwest Tuscany). Talanta, 171, 255–261.CrossRefGoogle Scholar
  3. Campanella, B., Onor, M., D’Ulivo, A., Giannecchini, R., D’Orazio, M., Petrini, R., & Bramanti, E. (2016). Human exposure to thallium through tap water: a study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Science of the Total Environment, 548–549, 33–42.CrossRefGoogle Scholar
  4. Krasnodȩbska-Ostrȩga, B., Sadowska, M., Piotrowska, K., & Wojda, M. (2013). Thallium (III) determination in the Baltic seawater samples by ICP MS after preconcentration on SGX C18 modified with DDTC. Talanta, 112, 73–79.CrossRefGoogle Scholar
  5. Léonard, A., & Gerber, G. . (1997). Mutagenicity, carcinogenicity and teratogenicity of thallium compounds. Mutation Research/Reviews in Mutation Research, 387(1), 47–53.CrossRefGoogle Scholar
  6. MATTM (2003). MATTM - DECRETO 12 giugno 2003, n.185 Regolamento recante norme tecniche per il riutilizzo delle acque reflue in attuazione dell’articolo 26, comma 2, del decreto legislativo 11 maggio 1999, n. 152. Gazzetta Ufficiale, (169), 1–15.Google Scholar
  7. MATTM (2014). Ministero dell ’ Ambiente e della Tutela del Territorio e del Mare, 5–9.Google Scholar
  8. Peter, A. L. J., & Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environment International, 31(4), 493–501.CrossRefGoogle Scholar
  9. Petrini, R., D’Orazio, M., Giannecchini, R., & Bramanti, E. (2017). Thallium ecosystem diseases in dismissed mine sites as a threat for public health: the Valdicastello-Pietrasanta (Italy) case history. Rendiconti Online della Società Geologica Italiana, 35(2), 312–312.Google Scholar
  10. Pina, F., Bernardo, M. A., & García-España, E. (2000). Fluorescent chemosensors containing polyamine receptors. European Journal of Inorganic Chemistry, 2000(10), 2143–2157.CrossRefGoogle Scholar
  11. Rodríguez-Mercado, J. J., & Altamirano-Lozano, M. A. (2013). Genetic toxicology of thallium: a review. Drug and Chemical Toxicology, 36(3), 369–383.CrossRefGoogle Scholar
  12. Roper, E. D., Talanov, V. S., Gorbunova, M. G., Bartsch, R. A., and Talanova, G. G. (2007). Optical Determination of Thallium(I) and Cesium(I) with a Fluorogenic Calix[4]arenebis(crown-6 ether) Containing One Pendent Dansyl Group.Google Scholar
  13. Talanov, V. S., Talanova, G. G., Gorbunova, M. G., & Bartsch, R. A. (2002). Novel caesium-selective, 1,3-alternate calix[4]arene-bis(crown-6-ethers) with proton-ionizable groups for enhanced extraction efficiency. Journal of the Chemical Society, Perkin Transactions 2, 0(2), 209–215.CrossRefGoogle Scholar
  14. Talanova, G. G., Roper, E. D., Buie, N. M., Gorbunova, M. G., Bartsch, R. A., and Talanov, V. S. (2005). Novel fluorogenic calix[4]arene-bis(crown-6-ether) for selective recognition of thallium(i). Chemical Communications, 0(45), 5673.Google Scholar
  15. USEP. (2009). Toxicological review of thallium and compounds, (EPA/635/R-08/001F), 163.Google Scholar
  16. Xiao, T., Guha, J., Boyle, D., Liu, C.-Q., Zheng, B., Wilson, G. C., et al. (2004). Naturally occurring thallium: a hidden geoenvironmental health hazard? Environment International, 30(4), 501–507.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Monica Puccini
    • 1
  • Lorenzo Guazzelli
    • 2
  • Andrea Luca Tasca
    • 1
  • Andrea Mezzetta
    • 2
  • Christian Silvio Pomelli
    • 2
  1. 1.Department of Civil and Industrial EngineeringUniversity of PisaPisaItaly
  2. 2.Department of PharmacyUniversity of PisaPisaItaly

Personalised recommendations