Advertisement

Biofertilizer Replace Urea as a Source of Nitrogen for Sugarcane Production

  • Henrique Vieira de Mendonça
  • Carlos Eugênio Martins
  • Wadson Sebastião Duarte da Rocha
  • Cristiano Amancio Vieira Borges
  • Jean Pierre Henry Balbaud Ometto
  • Marcelo Henrique Otenio
Article
  • 48 Downloads

Abstract

In this study, different nitrogen doses (0, 16, 48, 64, 80, and 96 kg ha−1) from two sources, biofertilizer (from anaerobic digestion of cattle wastewater) and urea, were applied to cultivate two sugarcane varieties (RB 867515 and SP 803280). °Brix values higher than 21% were obtained with application of 80 kg ha−1 from biofertilizer. The mean productivity of the cultivar RB 867515 using biofertilizer was 147.5 ton ha−1, while from urea it was 136.87 ton ha−1. The cultivar SP 803280 produced an average yield of 152.25 ton ha−1 when applying biofertilizer and 154.37 ton ha−1 with use of urea. Significant differences (P ≤ 0.05) between the use of biofertilizer and urea were detected for cultivar RB 867515 in terms of crude protein concentration. The application of 80 kg of N ha−1 was considered the ideal dose, corresponding to fertirrigation blades of 54 mm of biofertilizer. The experiment showed that the biofertilizer formulation analyzed can replace urea as a nitrogen source for growing sugarcane.

Graphical Abstract

Keywords

Wastewater reuse Application rate Nitrogen Growth Biomass production 

Notes

Acknowledgements

The authors thank the Brazilian Agricultural Research Corporation (EMBRAPA Dairy Cattle)—process no.: 02.11.05.004.00.00, funding agencies: National Counsel of Technological and Scientific Development (CNPq)—process no.: 562645/2010-1, Foundation for Research Support of the State of Minas Gerais (FAPEMIG)—process no.: CVZ-6/11, Coordination for the Improvement of Higher Level or Education Personnel (CAPES)—process no.: 99999.010229/2014-00, the InterAmerican Institute for Climate Change Research (CRN3005) and the Foundation for Research Support of the State of São Paulo (FAPESP2014/50627-2), for financial support.

References

  1. APHA (2012). American Public Health Association; American Waterworks Association - AWWA; Water Environment Federation - WEF. Standard Methods for the Examination of Water and Waste Water. 22.ed. Washington.Google Scholar
  2. Bernardo, S.; Soares, A. A.; Mantovani, E. C., (2008). Manual de irrigação. 8. ed. publishing company: UFV. 625 p. Viçosa.Google Scholar
  3. Brasil (2015). Companhia Nacional de Abastecimento (CONAB). Acompanhamento de safra brasileira: cana de açúcar, terceiro levantamento (safra 2015/16), V.2, N.3. Brasília.Google Scholar
  4. Brieger, F.O. (1968). Início da safra. Como determinar a maturação. Boletim Informativo Copereste, v.4, p.1–3, Ribeirão Preto.Google Scholar
  5. Cai, T., Park, S. Y., & Lin, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.CrossRefGoogle Scholar
  6. Cardoso, N. P., Bordonal, R. O., & La Scala Jr., N. (2016). Greenhouse gas emission estimate in sugarcane irrigation in Brazil: is it possible to reduce it, and still increase crop yield? Journal of Cleaner Production, 112, 3988–3997.CrossRefGoogle Scholar
  7. Cavicchioli, A. Q., Scatamburlo, T. M., Yamazi, F. A., Pieri, F. A., & Nero, L. A. (2015). Occurrence of Salmonella, Listeria monocytogenes, and enterotoxigenic Staphylococcus in goat milk from small and medium-sized farms located in Minas Gerais State, Brazil. Journal of Dairy Science, 98, 8386–8390.CrossRefGoogle Scholar
  8. Dias, M. O. D. S., Filho, R. M., Mantelatto, P. E., Cavalett, O., Rossel, E. V., Bonomi, A., & Leal, R. L. V. (2015). Sugarcane processing for ethanol and sugar in Brazil. Environmental Development, 15, 35–51.CrossRefGoogle Scholar
  9. Doorenbos, J., & Kassam, A. H. (1979). Yield response to water. 172p. Irrigation and drainage paper, 33. Rome: FAO.Google Scholar
  10. EMBRAPA (1997). Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 212p. Rio de Janeiro.Google Scholar
  11. IBGE - Instituto Brasileiro de Geografia e Estatística. Produção da pecuária Municipal. (2015). available in: http://www.ibge.gov.br/home/estatistica/economia/ppm/2015/. accessed in: 23/10/2017.
  12. Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy, 45, 540–555.CrossRefGoogle Scholar
  13. Matos, A.T. (2014). Tratamento e aproveitamento agrícola de resíduos sólidos. 1.ed. publishing company: UFV, 240 p. Viçosa.Google Scholar
  14. Mendes Junior, A. P., & Bueno, O. C. (2015). Participação da energia fóssil na produção dos fertilizantes industriais nitrogenados com ênfase na ureia. Energia na Agricultura, 30, 442–447.CrossRefGoogle Scholar
  15. Mendonça, H. V., Ribeiro, C. B. M., Borges, A. C., & Bastos, R. R. (2012). Remoção de nitrogênio e fósforo de águas residuárias de laticínios por sistemas alagados construídos operando em bateladas. Journal Ambiente & Água, 7, 75–87.CrossRefGoogle Scholar
  16. Mendonça, H. V., Ometo, J. P. H. B., & Otenio, M. H. (2017). Production of energy and biofertilizer from cattle wastewater in farms with intensive cattle breeding. Water, Air, & Soil Pollution, 228, 1–14.CrossRefGoogle Scholar
  17. Oliveira, R. A., Santos, R. S., Ribeiro, A., Zolnier, S., & Barbosa, M. H. P. (2012). Estimativa da produtividade da cana-de-açúcar para as principais regiões produtoras de Minas Gerais usando-se o método ZAE I. Revista Brasileira de Engenharia Agricola e Ambiental, 16, 549–557.CrossRefGoogle Scholar
  18. Penmam, M. L. (1948). Evaporation: an introductory survey. Netherlands Journal of Agricultural Science, 4, 9–29.Google Scholar
  19. Scheneider, F. (1980). Sugar Analysis, ICUMSA Methods. Official and Tentative Methods Recommended by the International Commission for Uniform Methods of Sugar Analysis (ICUMSA). 1.ed. Publishing company: WILEY-VCH Verlag GmbH & Co. KGaA, 264 p. Weinheim. DOI:  https://doi.org/10.1002/star.19800320914
  20. Silva, J. B. G., Martinez, M. A., Pires, C. P., Andrade, I. P. S., & Silva, G. T. (2012). Avaliação da condutividade elétrica e pH da solução do solo em uma área fertirrigada com água residuária de bovinocultura de leite. Revista Irriga - Botucatu, special edition, 250–263.Google Scholar
  21. Silva, F. S., Cunha, F. N., Oliveira, R. C., Freitas Moura, L. M., Moura, L. C., & Teixeira, M. B. I. (2014). Crescimento da cana-de-açúcar sob aplicação de nitrogênio via gotejamento subsuperficial. Revista Brasileira de Agricultura Irrigada, 8, 1–11.CrossRefGoogle Scholar
  22. Silveira, L. C. I. da; Barbosa, M. H. P.; Oliveira, M. W., 2012. Níveis de variedades de cana-de-açúcar predominantes nas principais regiões produtoras de cachaça de Minas Gerais. Informe Agropecuário. 23, 25–32.Google Scholar
  23. Wiedenfeld, R. P. (2000). Water stress during different sugarcane growth periods on yield and response to N fertilization. Agricultural Water Management, 43, 173–182.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Henrique Vieira de Mendonça
    • 1
  • Carlos Eugênio Martins
    • 2
  • Wadson Sebastião Duarte da Rocha
    • 2
  • Cristiano Amancio Vieira Borges
    • 2
  • Jean Pierre Henry Balbaud Ometto
    • 1
    • 3
  • Marcelo Henrique Otenio
    • 2
  1. 1.Institute of Biological Sciences—Post Graduate Program in EcologyFederal University of Juiz de ForaJuiz de ForaBrazil
  2. 2.Embrapa Dairy CattleBrazilian Agricultural Research CorporationJuiz de ForaBrazil
  3. 3.Earth System Science Centre-National Institute for Space ResearchSão José dos CamposBrazil

Personalised recommendations