Advertisement

Effective Removal of the Remazol Yellow GR Dye Using Cellulose Functionalized by Basic Groups

  • Lucinaldo S. Silva
  • Mateus S. Silva
  • Francisco J. L. Ferreira
  • Luciano C. B. Lima
  • Roosevelt D. S. Bezerra
  • Antônia M. G. L. Citó
  • Josy A. Osajima
  • Edson C. Silva Filho
Article

Abstract

Adsorption has been researched attempting to minimize the pollution caused by dyes, which represents a serious environmental problem as contamination of surface and ground water. Therefore, cellulose and its modified forms with amine and thiols groups constitute a class of versatile adsorbents for the removal of anionic dyes in aqueous solution. In this context, this work reports the preparation of cellulose modified by ethylene sulfide and ethylenediamine (Cel-ESEN), through the reaction of the cellulose modified by ethylene sulfide (CEL-ES) and ethylenediamine (EN). Materials were characterized by elemental analysis, which showed in the Cel-ESEN matrix 10.12 ± 0.10%, 5.52 ± 0.06% of sulfur and nitrogen, respectively. Nuclear magnetic resonance in the solid state of 13C (13C NMR) showed, for the Cel-ESEN matrix, a peak related to CH2 groups from the molecules incorporated in the cellulose biopolymer. Crystalline Index obtained by X-ray diffraction (XRD) was in the order pure Cellulose > Cel-Cl > Cel-ES > Cel-ESEN. The adsorbent matrix (Cel-ESEN) was used in the removal of the remazol yellow GR (RY) dye in aqueous medium. Data obtained experimentally from kinetic study had the best adjustment to the proposed pseudo-second-order model. The adsorption process occurs in monolayer, is endothermic and thermodynamically favorable. Adsorption capacity of the modified material became 118 times higher than the starting material. These results suggest that the obtained biopolymer can be used as an alternative material to remove RY in aqueous solution.

Keywords

Modified cellulose Characterization Adsorption Remazol yellow GR dye 

Notes

Acknowledgments

The authors thank Coordination Support in Higher Education (CAPES), National Council for Scientific and Technological Development (CNPq) and the Foundation of Support to Research of Piauí (FAPEPI) for financial support. The Federal University of Piauí (UFPI) and Federal Institute of Maranhão (IFMA), to provide work research conditions.

References

  1. Aharoni, C., & Tompkins, F. C. (1970). Kinetics of adsorption and desorption and the Elovich equation. Advances in Catalysis, 21, 1–49.Google Scholar
  2. Ahmed, K., Rehman, F., Pires, C. T. G. V. M. T., Rahim, A., Santos, A. L., & Airoldi, C. (2016). Aluminum doped mesoporous silica SBA-15 for the removal of remazol yellow dye from water. Microporous and Mesoporous Materials, 236, 167–175.CrossRefGoogle Scholar
  3. Andrzejewska, A., Krysztafkiewicz, A., & Jesionowski, T. (2007). Treatment of textile dye wastewater using modified silica. Dyes and Pigments, 75, 116–124.CrossRefGoogle Scholar
  4. Banaei, A., Samadi, S., Karimi, S., Vojoudi, H., Pourbasheer, E., & Badiei, A. (2017). Synthesis of silica gel modified with 2,2′-(hexane-1,6-diylbis(oxy))dibenzaldehyde as an new adsorbent for the removal of reactive yellow 84 and reactive blue 19 dyes from aqueous solutions: equilibrium and thermodynamic studies. Powder Technology, 319, 60–70.CrossRefGoogle Scholar
  5. Bayramoglu, G., Adiguzel, N., Ersoy, G., Yilmaz, M., & Arica, M. Y. (2013). Removal of textile dyes from aqueous solution using amine-modified plant biomass of A. caricum: equilibrium and kinetic studies. Water, Air, & Soil Pollution, 224, 1640.CrossRefGoogle Scholar
  6. Bezerra, R. D. S., Morais, A. I. S., Osajima, J. A., Nunes, L. C. C., & Silva Filho, E. C. (2016). Development of new phosphated cellulose for application as an efficient biomaterial for the incorporation/release of amitriptyline. International Journal of Biological Macromolecules, 86, 362–375.CrossRefGoogle Scholar
  7. Cardoso, N. F., Lima, E. C., Pinto, I. S., Amavisca, C. V., Royer, B., Pinto, R. B., Alencar, W. S., & Pereira, S. F. P. (2011a). Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. Journal of Environmental Management, 92, 1237–1247.CrossRefGoogle Scholar
  8. Cardoso, N. F., Pinto, R. B., Lima, E. C., Calvete, T., Amavisca, C. V., Royer, B., Cunha, M. L., Fernandes, T. H. M., & Pinto, I. S. (2011b). Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination, 269, 92–103.CrossRefGoogle Scholar
  9. Chaudhuri, H., Dash, S., Ghorai, S., Pal, S., & Sarkar, A. (2016). SBA-16: application for the removal of neutral, cationic, and anionic dyes from aqueous medium. Journal of Environmental Chemical Engineering, 4, 157–166.CrossRefGoogle Scholar
  10. Freundlich, H. M. F. (1906). Uber die adsorption in lösungen. Zeitschrift Fur Physikalische Chemie, 57, 385–470.Google Scholar
  11. Gemeay, A. H., Aboelfetoh, E. F., & El-Sharkawy, R. G. (2018). Immobilization of green synthesized silver nanoparticles onto amino-functionalized silica and their application for indigo carmine dye removal. Water, Air, & Soil Pollution, 229, 16.CrossRefGoogle Scholar
  12. Ho, Y. S., & Mckay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76, 183–191.CrossRefGoogle Scholar
  13. Hokkanen, S., Bhatnagar, A., & Sillanpaa, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156–173.CrossRefGoogle Scholar
  14. Huang, X.-Y., Bin, J.-P., Bu, H.-T., Jiang, G.-B., & Zeng, M.-H. (2011a). Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan. Carbohydrate Polymers, 84, 1350–1356.CrossRefGoogle Scholar
  15. Huang, X.-Y., Mao, X.-Y., Bu, H.-T., Yu, X.-Y., Jiang, G.-B., & Zeng, M.-H. (2011b). Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydrate Research, 346, 1232–1240.CrossRefGoogle Scholar
  16. Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., & Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276.CrossRefGoogle Scholar
  17. Jiang, F., Dinh, D. M., & Hsieh, Y.-L. (2017). Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels. Carbohydrate Polymers, 173, 286–294.CrossRefGoogle Scholar
  18. Jin, L., Li, W., Xu, Q., & Sun, Q. (2016). Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose, 22, 2443–2456.CrossRefGoogle Scholar
  19. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kunglisa Svenska Vetenskapsakademiens Handlingar, 24, 1–39.Google Scholar
  20. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 2221–2295.CrossRefGoogle Scholar
  21. Lima, E. C., Royer, B., Vaghetti, J. C. P., Simon, N. M., Cunha, B. M., Pavan, F. A., Benvenutti, E. V., Cataluna-Veses, R., & Airoldi, C. (2008). Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution kinetics and equilibrium study. Journal of Hazardous Materials, 155, 536–550.CrossRefGoogle Scholar
  22. Mbarki, F., Kesraoui, A., Seffen, M., & Ayrault, P. (2018). Kinetic, thermodynamic, and adsorption behavior of cationic and anionic dyes onto corn stigmata: nonlinear and stochastic analyses. Water, Air, & Soil Pollution, 229, 95.CrossRefGoogle Scholar
  23. Musyoka, S. M., Ngila, J. C., Moodley, B., Petrik, L., & Kindness, A. (2011). Synthesis, characterization, and adsorption kinetic studies of ethylenediamine modified cellulose for removal of Cd and Pb. Analytical Letters, 44, 1925–1936.CrossRefGoogle Scholar
  24. O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource Technology, 99, 6709–6724.CrossRefGoogle Scholar
  25. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2009). Introduction to spectroscopy (4th ed.). Broks Cole: Philadelphia.Google Scholar
  26. Roy, A., Chakraborty, S., Kundu, S. P., Adhikari, B., & Majumder, S. B. (2012). Adsorption of anionic-azo dye from aqueous solution by lignocellulose-biomass jute fiber: equilibrium, kinetics, and thermodynamics study. Industrial & Engineering Chemical Research, 51, 12095–12106.CrossRefGoogle Scholar
  27. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280, 1–13.CrossRefGoogle Scholar
  28. Segal, L., Creely, J. J., Martin Jr., A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29, 786–794.CrossRefGoogle Scholar
  29. Shajahan, A., Shankar, S., Sathiyaseelan, A., Narayan, K. S., Narayanan, V., Kaviyarasan, V., & Ignacimuthu, S. (2017). Comparative studies of chitosan and its nanoparticles for the adsorption efficiency of various dyes. International Journal of Biological Macromolecules, 104, 1449–1458.CrossRefGoogle Scholar
  30. Silva Filho, E. C., Santana, S. A. A., Melo, J. C. P., Oliveira, F. J. V. E., & Airoldi, C. (2010). X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. Journal of Thermal Analysis Calorimetry, 100, 315–321.CrossRefGoogle Scholar
  31. Silva Filho, E. C., Silva, L. S., Lima, L. C. B., Santos Junior, L. S., Santos, M. R. M. C., Matos, J. M. E., & Airoldi, C. (2011). Thermodynamic data of 6-(4′-aminobutylamino)-6- deoxycellulose sorbent for cation removal from aqueous solutions. Separation Science and Technology, 46, 2566–2574.CrossRefGoogle Scholar
  32. Silva Filho, E. C., Lima, L. C. B., Silva, F. C., Sousa, K. S., Fonseca, M. G., & Santana, S. A. A. (2013). Immobilization of ethylene sulfide in aminated cellulose for removal of the divalent cations. Carbohydrate Polymers, 92, 1203–1210.CrossRefGoogle Scholar
  33. Silva, L. S., Lima, L. C. B., Silva, F. C., Matos, J. M. E., Santos, M. R. M. C., Santos Júnior, L. S., Sousa, K. S., & Silva filho, E. C. (2013). Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol. Chemical Engineering Journal, 218, 89–98.CrossRefGoogle Scholar
  34. Silva, L. S., Lima, L. C. B., Ferreira, F. J. L., Silva, M. S., Osajima, J. A., Bezerra, R. D. S., & Silva Filho, E. C. (2015). Sorption of the anionic reactive red RB dye in cellulose: assessment of kinetic, thermodynamic, and equilibrium data. Open Chemistry, 13, 801–812.CrossRefGoogle Scholar
  35. Silva, F. C., Silva, M. M. F., Lima, L. C. B., Osajima, J. A., & Silva Filho, E. C. (2016). Integrating chloroethyl phosphate with biopolymer cellulose and assessing their potential for absorbing brilliant green dye. Journal of Environmental Chemical Engineering, 4, 3348–3356.CrossRefGoogle Scholar
  36. Silva, L. S., Carvalho, J. O., Bezerra, R. D. S., Silva, M. S., Ferreira, F. J. L., Osajima, J. A., & Silva Filho, E. C. (2018). Potential of cellulose functionalized with carboxylic acid as biosorbent for the removal of cationic dyes in aqueous solution. Molecules, 23, 743.CrossRefGoogle Scholar
  37. Subbaiah, M. V., & Kim, D.-S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128, 109–117.CrossRefGoogle Scholar
  38. Tanzifi, M., Yaraki, M. T., Karami, M., Karimi, S., Kiadehi, A. D., Karimipour, K., & Wang, S. (2018). Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites. Journal of Colloid and Interface Science, 519, 154–173.CrossRefGoogle Scholar
  39. Temkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica USSR, 12, 327–356.Google Scholar
  40. Tian, Y., Liu, Y., Sun, Z., Li, H., Cui, G., & Yan, S. (2015). Fibrous porous silica microspheres decorated with Mn3O4 for effective removal of methyl orange from aqueous solution. RSC Advances, 5, 106068–106076.CrossRefGoogle Scholar
  41. Tran, H. N., Lee, C.-K., Vu, M. T., & Chao, H.-P. (2017). Removal of copper, lead, methylene green 5, and acid red 1 by saccharide-derived spherical biochar prepared at low calcination temperatures: adsorption kinetics, isotherms, and thermodynamics. Water, Air, & Soil Pollution, 228, 401.CrossRefGoogle Scholar
  42. Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid Interface Science, 209, 172–184.CrossRefGoogle Scholar
  43. Zhou, Y., Zhang, M., Wang, X., Huang, Q., Min, Y., Ma, T., & Niu, J. (2014). Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Industrial & Engineering Chemical Research, 53, 5498–5506.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lucinaldo S. Silva
    • 1
  • Mateus S. Silva
    • 4
  • Francisco J. L. Ferreira
    • 4
  • Luciano C. B. Lima
    • 4
  • Roosevelt D. S. Bezerra
    • 2
  • Antônia M. G. L. Citó
    • 3
  • Josy A. Osajima
    • 4
  • Edson C. Silva Filho
    • 4
  1. 1.Federal Institute of Maranhão, Açailândia Campus, IFMAMaranhãoBrazil
  2. 2.Federal Institute of Piauí, Teresina-Central Campus, IFPITeresinaBrazil
  3. 3.Department of ChemistryFederal University of PiauíTeresinaBrazil
  4. 4.Interdisciplinary Laboratory for Advanced Materials – LIMAV, UFPITeresinaBrazil

Personalised recommendations