Advertisement

Struvite Precipitation from Anaerobically Digested Dairy Manure

  • Katherine Brown
  • Joe Harrison
  • Keith Bowers
Article

Abstract

When manure is applied to crops on a nitrogen basis, it often creates a buildup of phosphorus (P) in the soil. Phosphorus recovery as struvite is one strategy to capture excess P prior to land application. To form struvite from dairy cow manure, an acid pH is required to break the calcium phosphate bonds present in the manure. Oxalic acid is desirable because, in addition to breaking bonds, its anion binds calcium. An experiment was designed to measure struvite precipitation from dairy manure after addition of commercial grade oxalic acid to result in varying pH points for maximum struvite production. Initially decreasing the pH of the dairy manure to 6.0 and later increasing the pH to 8.7 removed the most P (90%); however, this high pH can lead to magnesium phosphate precipitation and a pH of 6.0 was not low enough to completely disassociate the calcium from phosphate. Therefore, we recommend initially decreasing the pH to 5.5 and later increasing it to pH 8.2 which achieved 80%P removal.

Keywords

Struvite Oxalic acid Dairy Manure Calcium 

Notes

Funding Information

The project is partially funded by the Washington State Dairy Products Commission.

References

  1. Arnott, H. J. (1995). Calcium oxalate in fungi. In S. R. Khan (Ed.), Calcium oxalate in biological systems (pp. 73–111). Boca Raton: CRC Press.Google Scholar
  2. Arvaniti, E. C., Lioliou, M. G., Paraskeva, C. A., Payatakes, A. C., Østvold, T., Koutsoukos, P. G., et al. (2010). Calcium oxalate crystallization on concrete heterogeneities. Chemical Engineering Research and Design, 88, 1455–1460.CrossRefGoogle Scholar
  3. Belen, M., Salgado, J. M., Rodriguez, N., Cortes, S., Converti, A., Dominguez, J. M., et al. (2010). Biotechnological production of citric acid. Brazilian Journal of Microbiology, 41, 862–875.CrossRefGoogle Scholar
  4. Bhuiyan, M. I. H., Mavinic, D. S., Beckie, R. D., et al. (2007). A solubility and thermodynamic study of struvite. Environmental Technology, 28, 1015–1026.CrossRefGoogle Scholar
  5. Bouropoulos, N. C., & Koutsoukos, P. G. (2000). Spontaneous precipitation of struvite from aqueous solutions. Journal of Crystal Growth, 213, 381–388.CrossRefGoogle Scholar
  6. Bowers, K. E., & Westerman, P. W. (2005). Performance of cone-shaped fluidized bed struvite crystallizers in removing phosphorus from wastewater. T. ASAE, 48(3), 1227–1234.CrossRefGoogle Scholar
  7. Buchanan, J., Mote, C., Robinson, R., et al. (1994). Thermodynamics of struvite formation. T. ASAE, 37, 617–621.CrossRefGoogle Scholar
  8. Demirer, G., & Yilmazel, D. (2013). Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation. Waste Management & Research, 31, 792–804.CrossRefGoogle Scholar
  9. Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36, 3925–3940.CrossRefGoogle Scholar
  10. Fattah, K. P., Mavinic, D. S., Koch, F. A., Jacob, C., et al. (2008). Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant. Journal of Environmental Science and Health, Part A, 43, 756–764.CrossRefGoogle Scholar
  11. Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol., 41, 47–92.CrossRefGoogle Scholar
  12. Gadd, G. M., Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., Liang, X., et al. (2014). Oxalate production by fungi: significance in geomycology, biodeterioration, and bioremediation. Fungal Bio. Rev., 28, 36–55.CrossRefGoogle Scholar
  13. Graustein, W. C., Cromack Jr., K., Sollins, P., et al. (1977). Calcium oxalate: occurrence in soils and effects on nutrient and geochemical cycles. Science, 198, 1252–1254.CrossRefGoogle Scholar
  14. Güngor, K., & Karthikeyan, K. (2008). Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters. Bioresource Technology, 99, 425–436.CrossRefGoogle Scholar
  15. Harris, W. G., Wilkie, A. C., Cao, X., Sirengo, R., et al. (2008). Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresource Technology, 99, 3036–3043.CrossRefGoogle Scholar
  16. Huchzermeier, M. P., & Tao, W. (2012). Overcoming challenges to struvite recovery from anaerobically digested dairy manure. Water Environment Research, 84(1), 34–41.CrossRefGoogle Scholar
  17. Jaffer, Y., Clark, T. A., Pearce, P., Parsons, S. A., et al. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36, 1834–1842.CrossRefGoogle Scholar
  18. Jin, Y., Hu, Z., Wen, Z., et al. (2009). Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. Water Research, 43, 3493–3502.CrossRefGoogle Scholar
  19. Le Corre, K. S., Valsami-Jones, E., Hobbs, P., Parsons, A., et al. (2009). Phosphorus recovery from wastewater by struvite crystallization: a review. Crit. Rev. Environ. Sci. Tec., 39, 433–477.CrossRefGoogle Scholar
  20. Loewenthal, R. E., Kornmuller, U. R. C., Heerden, E. P., et al. (1994). Modelling struvite precipitation in anaerobic treatment systems. Water Science and Technology, 30(12), 107–116.CrossRefGoogle Scholar
  21. Ludwick, A.E. (1998). Phosphorus mobility in perspective. News & Views, Potash & Phosphate Institute.Google Scholar
  22. Mehta, C. M., & Batstone, D. J. (2013). Nucleation and growth kinetics of struvite crystallization. Water Research, 47, 2890–2900.CrossRefGoogle Scholar
  23. Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., Verstraete, W., et al. (2009). Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization. Water Research, 43, 1887–1892.CrossRefGoogle Scholar
  24. Nakata, P. A. (2003). Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science, 164, 901–909.CrossRefGoogle Scholar
  25. Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34, 473–492.CrossRefGoogle Scholar
  26. Qureshi, A., Lo, K. V., Liao, P. H., et al. (2008). Microwave treatment and struvite recovery potential of dairy manure. Journal of Environmental Science and Health. Part. B, 43, 350–357.CrossRefGoogle Scholar
  27. Rahaman, M. S., Ellis, N., Mavinic, D. S., et al. (2008). Effects of various process parameters on struvite precipitation kinetics and subsequent determination of rate constants. Water Science and Technology, 57, 535–542.CrossRefGoogle Scholar
  28. Roncal-Herrero, T., & Oelkers, E. H. (2011). Experimental determination of struvite dissolution and precipitation rates as a function of pH. Applied Geochemistry, 26, 921–928.CrossRefGoogle Scholar
  29. Ryther, J. H., & Dunstan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171(3975), 1008–1013.CrossRefGoogle Scholar
  30. Schuiling, R. D., & Andrade, A. (1999). Recovery of struvite from calf manure. Environmental Technology, 20, 765–768.CrossRefGoogle Scholar
  31. Shen, Y., Ogejo, J. A., Bowers, K. E., et al. (2011). Abating the effects of calcium on struvite precipitation in liquid dairy manure. T. ASABE, 54(1), 325–336.CrossRefGoogle Scholar
  32. Srinivasan, A., Nkansah-Boadu, F., Liao, P. H., Lo, K. V., et al. (2014). Effects of acidifying reagents on microwave treatment of dairy manure. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 49, 532–539.CrossRefGoogle Scholar
  33. Stewart, W.M. (2002). Commercial phosphorus fertilizer…know your sources. News & Views, Potash & Phosphate Institute.Google Scholar
  34. U.S. Geological Survey (USGS), Mineral commodity summaries, 2013. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2013-phosp.pdf
  35. Uludag-Demirer, S., Demirer, G. N., Frear, C., Chen, S., et al. (2008). Anaerobic digestion of dairy manure with enhanced ammonia removal. Journal of Environmental Management, 86, 193–200.CrossRefGoogle Scholar
  36. US EPA. (1994). Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Method 200.7, revision 4.4. T.D. Martin, C.A. Brockhoff, J.T. Creed, and EMMC Methods Work Group, Revision 4.4.Google Scholar
  37. US EPA. (1999). Determination of inorganic anions by ion chromatography. 4500-P, Method 300.0, revision 2.1. John D. Pfaff.Google Scholar
  38. Wang, J., Burken, J. G., Zhang, X., Surampalli, R., et al. (2005). Engineered struvite precipitation: impacts of component-ion molar ratios and pH. Journal of Environmental Engineering, ASCE, 131, 1433–1440.CrossRefGoogle Scholar
  39. Weiss, W. P. (2004). Estimating manure phosphorus excretion by dairy cows. J.Dairy Sci., 87, 2158.CrossRefGoogle Scholar
  40. Zeng, L., & Li, X. (2006). Nutrient removal from anaerobically digested cattle manure by struvite precipitation. Journal of Environmental Engineering and Science, 5, 285–294.CrossRefGoogle Scholar
  41. Zhang, T., Bowers, K. E., Harrison, J. H., Chen, S., et al. (2010). Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent. Water Environment Research, 82(1), 34–42.CrossRefGoogle Scholar
  42. Zhang, H., Lo, V. K., Thompson, J. R., Koch, F. A., Liao, P. H., Lobanov, S., Mavinic, D. S., Atwater, J. W., et al. (2015). Recovery of phosphorus from dairy manure: a pilot-scale study. Environmental Technology, 36, 1398–1404.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Animal SciencesWashington State UniversityPullmanUSA
  2. 2.Department of Animal SciencesWashington State UniversityPuyallupUSA
  3. 3.Multiform HarvestSeattleUSA

Personalised recommendations