Advertisement

Exhaustive Screening of Long-Term Pollutants in Riverbank Sediments of the Wurm River, Germany

  • Lukas Hagemann
  • Michael Buchty-Lemke
  • Frank Lehmkuhl
  • Jannika Alzer
  • Eberhard Andreas Kümmerle
  • Jan Schwarzbauer
Article
  • 168 Downloads

Abstract

Fluvial sediments can act as archives for long-term pollution. However, in environmental studies, often only preselected contaminants and, therefore, only a limited part of the pollution are considered. Herein, geochemical investigations of riverbank samples of the Wurm River (catchment < 400 km2) depict the anthropogenic impact of the city Aachen (250,000 inhabitants) to its main outlet resulting in an exhaustive list of present pollutants including their concentrations. The study is based on 14 riverbank sediment samples at eight sampling sites on a 7.6-km-long segment of the Wurm River. The sediment samples were analyzed for grain size composition (laser diffraction particle size analyzer), total organic carbon (TOC), trace element inventory (X-ray fluorescence), and organic compounds (chromatography-mass spectrometry). Here, we report quantitative data for 71 persistent organic substances as well as six trace elements (Cu, Zn, As, Ba, Hg, and Pb) entering the Wurm River due to domestic and industrial emissions. In general, a slight decline of, e.g., PTEs, DDX, and PCB concentrations with decreasing sampling depth points to a steady improvement of conditions. Whereas no clear trends can be seen for organic pollutants along the investigated reach with increasing distance to the main source of pollution (Aachen city). As obtained concentrations for organic pollutants indicate a rather low level of pollution, trace element values exceed geogenic background values by far. Furthermore, we used selected compounds as time markers for a rough estimation of sedimentation rates. Obtained values point to a highly complex morphodynamic regime with changing sedimentation rates (0.6 to 3.0 cm a−1) within barely 100 m of river course.

Keywords

Riverbanks Sediments Organic pollutants Trace elements Small rivers Source apportionment 

Notes

Funding Information

We gratefully acknowledge the financial support by the German Research Foundation (Grant Numbers LE730/33-1 and SCHW750/18-1).

References

  1. Allen, J. R. L., & Thornley, D. M. (2004). Laser granulometry of Holocene estuarine silts: effects of hydrogen peroxide treatment. Holocene, 14(2), 290–295.  https://doi.org/10.1191/0959683604hl681rr.CrossRefGoogle Scholar
  2. Andersson, A., & Nilsson, K. O. (1972). Enrichment of trace elements from sewage sludge fertilizer in soils and plants. Ambio, 1(5), 176–179.  https://doi.org/10.2307/4311977.CrossRefGoogle Scholar
  3. Asplund, G., Borén, H., Carlsson, U., & Grimvall, A. (1991). Soil peroxidase-mediated chlorination of fulvic acid. In Humic Substances in the Aquatic and Terrestrial Environment (pp. 475–483). Berlin: Springer-Verlag.  https://doi.org/10.1007/BFb0010499.CrossRefGoogle Scholar
  4. Bábek, O., Faměra, M., Hilscherová, K., Kalvoda, J., Dobrovolnỳ, P., Sedláček, J., & Holoubek, I. (2011). Geochemical traces of flood layers in the fluvial sedimentary archive; implications for contamination history analyses. Catena, 87(2), 281–290.  https://doi.org/10.1016/j.catena.2011.06.014.CrossRefGoogle Scholar
  5. Bailey, R. E., van Wijk, D., & Thomas, P. C. (2009). Sources and prevalence of pentachlorobenzene in the environment. Chemosphere, 75(5), 555–564.  https://doi.org/10.1016/j.chemosphere.2009.01.038.CrossRefGoogle Scholar
  6. Bence, A. E., Kvenvolden, K. A., & Kennicutt II, M. C. (1996). Organic geochemistry applied to environmental assessments of Prince William sound, Alaska, after the Exxon Valdez oil spill—a review. Organic Geochemistry, 24(1), 7–42 Retrieved from http://www.sciencedirect.com/science/article/B6V7P-3VW7TJJ-3/2/4a3a308fc9b1bec917b84a35fdf3dd69.CrossRefGoogle Scholar
  7. Berger, M., & Schwarzbauer, J. (2016). Historical deposition of riverine contamination on terrestrial floodplains as revealed by organic indicators from an industrial point source. Water, Air, and Soil Pollution, 227(1).  https://doi.org/10.1007/s11270-015-2708-8.
  8. Berner, Z. A., Bleeck-Schmidt, S., Stüben, D., Neumann, T., Fuchs, M., & Lehmann, M. (2012). Floodplain deposits: a geochemical archive of flood history—a case study on the river Rhine, Germany. Applied Geochemistry, 27(3), 543–561.  https://doi.org/10.1016/J.APGEOCHEM.2011.12.007.CrossRefGoogle Scholar
  9. Boehm, P. D., & Farrington, J. W. (1984). Aspects of the polycyclic aromatic hydrocarbon geochemistry of recent sediments in the Georges Bank region. Environmental Science & Technology, 18(11), 840–845.  https://doi.org/10.1021/es00129a007.CrossRefGoogle Scholar
  10. Borwitzky, H., Bendig, H., & Schmidt, K. G. (1997). Polychlorierte naphthaline. Umweltwissenschaften und Schadstoff-Forschung, 9(3), 127–130.  https://doi.org/10.1007/BF02937619.CrossRefGoogle Scholar
  11. Brigden, K., Santillo, D., & Johnston, P. (2012). Nonylphenol ethoxylates (NPEs) in textile products, and their release through laundering. Greenpeace Research Laboratories Technical Report 1.Google Scholar
  12. Buchty-Lemke, M., & Lehmkuhl, F. (2018). Impact of abandoned water mills on central European foothills to lowland rivers: a reach scale example from the Wurm River, Germany. Geografiska Annaler, Series A, Physical Geography.  https://doi.org/10.1080/04353676.2018.1425621.
  13. Chen, Y., Lin, K., Chen, D., Wang, K., Zhou, W., Wu, Y., & Huang, X. (2018). Formation of environmentally relevant polyhalogenated carbazoles from chloroperoxidase-catalyzed halogenation of carbazole. Environmental Pollution, 232, 264–273.  https://doi.org/10.1016/J.ENVPOL.2017.09.045.CrossRefGoogle Scholar
  14. De La Torre-Roche, R. J., Lee, W. Y., & Campos-Díaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163(2–3), 946–958.  https://doi.org/10.1016/j.jhazmat.2008.07.089.CrossRefGoogle Scholar
  15. Dimond, J. B., & Owen, R. B. (1996). Long-term residue of DDT compounds in forest soils in Maine. Environmental Pollution, 92(2), 227–230.CrossRefGoogle Scholar
  16. Dsikowitzky, L., Schwarzbauer, J., & Littke, R. (2002). Distribution of polycyclic musks in water and particulate matter of the Lippe River (Germany). Organic Geochemistry, 33(12), 1747–1758.  https://doi.org/10.1016/S0146-6380(02)00115-8.CrossRefGoogle Scholar
  17. Dwiyitno, Dsikowitzky, L., Nordhaus, I., Andarwulan, N., Irianto, H. E., Lioe, H. N., & Schwarzbauer, J. (2016). Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia. Marine Pollution Bulletin, 110(2), 767–777.  https://doi.org/10.1016/j.marpolbul.2016.01.034.CrossRefGoogle Scholar
  18. Edwards, C. A. (1966). Insecticide residues in soils. In Residue Reviews (pp. 83–132). New York: Springer.CrossRefGoogle Scholar
  19. Eganhouse, R. P. (1997). Molecular markers and environmental organic geochemistry: an overview. Molecular Markers in Environmental Geochemistry, 1, 1–20. https://doi.org/10.1021/bk-1997-0671.ch001\r10.1021/bk-1997-0671.ch001.Google Scholar
  20. Eganhouse, R. P., & Pontolillo, J. (2000). Depositional history of organic contaminants on the Palos Verdes shelf, California. Marine Chemistry, 70(4), 317–338.  https://doi.org/10.1016/S0304-4203(00)00033-5.CrossRefGoogle Scholar
  21. Eganhouse, R. P., Blumfield, D. L., & Kaplan, I. R. (1983). Long-chain alkylbenzenes as molecular tracers of domestic wastesin the marine environment. Environmental Science & Technology, 17(9), 523–530.CrossRefGoogle Scholar
  22. Elsenrelch, S. J., Capel, P. D., Robbins, J. A., & Bourbonniere, R. (1989). Accumulation and diagenesis of chlorinated hydrocarbons in lacustrine sediments. Environmental Science and Technology, 23(9), 1116–1126.  https://doi.org/10.1021/es00067a009.CrossRefGoogle Scholar
  23. Falandysz, J. (1998). Polychlorinated naphthalenes: an environmental update. Environmental Pollution, 101(1), 77–90.  https://doi.org/10.1016/S0269-7491(98)00023-2.CrossRefGoogle Scholar
  24. Frische, K., Schwarzbauer, J., & Ricking, M. (2010). Structural diversity of organochlorine compounds in groundwater affected by an industrial point source. Chemosphere, 81(4), 500–508.  https://doi.org/10.1016/j.chemosphere.2010.07.039.CrossRefGoogle Scholar
  25. Froehner, S., Martins, R. F., & Errera, M. R. (2009). Assessment of fecal sterols in Barigui River sediments in Curitiba, Brazil. Environmental Monitoring and Assessment, 157(1–4), 591–600.  https://doi.org/10.1007/s10661-008-0559-0.CrossRefGoogle Scholar
  26. Gocht, T., Moldenhauer, K., & Pu, W. (2001). Historical record of polycyclic aromatic hydrocarbons (PAH) and heavy metals in oodplain sediments from the Rhine River (Hessisches Ried, Germany). Applied Geochemistry, 16, 1707–1721.CrossRefGoogle Scholar
  27. Gong, Z. M., Tao, S., Xu, F. L., Dawson, R., Liu, W. X., Cui, Y. H., & Sun, R. (2004). Level and distribution of DDT in surface soils from Tianjin, China. Chemosphere, 54(8), 1247–1253.  https://doi.org/10.1016/j.chemosphere.2003.10.021.CrossRefGoogle Scholar
  28. Gonzalez-Oreja, J. A., & Saiz-Salinas, J. I. (1998). Short-term spatio-temporal changes in urban pollution by means of faecal sterols analysis. Marine Pollution Bulletin, 36(11), 868–875.  https://doi.org/10.1016/S0025-326X(98)00037-X.CrossRefGoogle Scholar
  29. Grimalt, J. O., Van Drooge, B. L., Ribes, A., Vilanova, R. M., Fernandez, P., & Appleby, P. (2004). Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere, 54(10), 1549–1561.  https://doi.org/10.1016/j.chemosphere.2003.09.047.CrossRefGoogle Scholar
  30. Guo, J., Chen, D., Potter, D., Rockne, K. J., Sturchio, N. C., Giesy, J. P., & Li, A. (2014). Polyhalogenated carbazoles in sediments of Lake Michigan: a new discovery. Environmental Science & Technology, 48(21), 12807–12815.  https://doi.org/10.1021/es503936u.CrossRefGoogle Scholar
  31. Heberer, T. (2002). Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta Hydrochimica et Hydrobiologica, 30(5–6), 227–243.  https://doi.org/10.1002/aheh.200390005.CrossRefGoogle Scholar
  32. Heberer, T., & Dünnbier, U. (1999). DDT metabolite bis(chlorophenyl)acetic acid: the neglected environmental contaminant. Environmental Science and Technology, 33(14), 2346–2351.  https://doi.org/10.1021/es9812711.CrossRefGoogle Scholar
  33. Heim, S., & Schwarzbauer, J. (2013). Pollution history revealed by sedimentary records: a review. Environmental Chemistry Letters, 11(3), 255–270.  https://doi.org/10.1007/s10311-013-0409-3.CrossRefGoogle Scholar
  34. Heim, S., Schwarzbauer, J., Kronimus, A., Littke, R., & Hembrock-Heger, A. (2003). Organic pollutants in riparian wetlands of the Lippe river (Germany). Environmental Chemistry Letters, 1(3), 169–173.  https://doi.org/10.1007/s10311-003-0040-9.CrossRefGoogle Scholar
  35. Heim, S., Schwarzbauer, J., Kronimus, A., Littke, R., Woda, C., & Mangini, A. (2004). Geochronology of anthropogenic pollutants in riparian wetland sediments of the Lippe River (Germany). Organic Geochemistry, 35(11–12 SPEC. ISS), 1409–1425.  https://doi.org/10.1016/j.orggeochem.2004.03.008.CrossRefGoogle Scholar
  36. Heim, S., Ricking, M., Schwarzbauer, J., & Littke, R. (2005). Halogenated compounds in a dated sediment core of the Teltow canal, Berlin: time related sediment contamination. Chemosphere, 61(10), 1427–1438.  https://doi.org/10.1016/j.chemosphere.2005.04.113.CrossRefGoogle Scholar
  37. Heim, S., Hucke, A., Schwarzbauer, J., Littke, R., & Mangini, A. (2006). Geochronology of anthropogenic contaminants in a dated sediment core of the Rhine River (Germany): emission sources and risk assessment. Acta Hydrochimica et Hydrobiologica, 34(1–2), 34–52.  https://doi.org/10.1002/aheh.200500609.CrossRefGoogle Scholar
  38. Höke, H., & Zellerhoff, R. (1998). Metabolism and toxicity of diisopropylnaphthalene as compared to naphthalene and monoalkyl naphthalenes: a minireview. Toxicology, 126(1), 1–7.Google Scholar
  39. Hooda, P. S. (2010). Assessing bioavailability of soil trace elements. In P. S. Hooda (Ed.), Traceelements in soils (pp 229–265). Hoboken: John Wiley & Sons.Google Scholar
  40. Hoppmann, A. (2006). Integrierte Gewässerbewirtschaftung im Einzugsgebiet der Rur. In T. Reineke, F. Lehmkuhl, & H. Blümel (Eds.), Grenzüberschreitendes integratives Gewässermanagement, Naturschutz und Freizeitgesellschaft (p. 254). Sankt Augustin: Academia Verlag.Google Scholar
  41. Horowitz, A. J., Meybeck, M., Idlafkih, Z., & Biger, E. (1999). Variations in trace element geochemistry in the Seine River basin based on floodplain deposits and bed sediments. Hydrological Processes, 13(October 1998), 1329–1340.  https://doi.org/10.1002/(SICI)1099-1085(19990630)13:9<1329::AID-HYP811>3.0.CO;2-H.CrossRefGoogle Scholar
  42. Hudson-Edwards, K. A., & Taylor, K. G. (2003). The geochemistry of sediment-borne contaminants in fluvial, urban and estuarine environments. Applied Geochemistry, 18, 155–157.CrossRefGoogle Scholar
  43. Johnson, A. C., Aerni, H. R., Gerritsen, A., Gibert, M., Giger, W., Hylland, K., & Wettstein, F. E. (2005). Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Research, 39(1), 47–58.  https://doi.org/10.1016/j.watres.2004.07.025.CrossRefGoogle Scholar
  44. Jones, K. C., & Voogt, P. (1999). Persistent organic pollutants (POPs): state of the science. Environmental Pollution, 100, 209–221.  https://doi.org/10.1016/S0269-7491(99)00098-6.CrossRefGoogle Scholar
  45. Klos, H., & Schoch, C. (1993). Historical Trends of Sediment Loads-Memory of an Industrial Region. Acta Hydrochimica et Hydrobiologica, (1), 32–37 Retrieved from https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=Historical+Trends+of+Sediment+Loads%3A+Memory+of+an+Industrial+Region&btnG=.
  46. Krishnamurti, R. (2001). Chlorinated benzenes. Kirk-Othmer Encyclopedia of. Chemical Technology, 6, 211–225.  https://doi.org/10.1002/0471238961.0308121502182501.a01.pub2.CrossRefGoogle Scholar
  47. Kronimus, A., Schwarzbauer, J., Dsikowitzky, L., Heim, S., & Littke, R. (2004). Anthropogenic organic contaminants in sediments of the Lippe river, Germany. Water Research, 38(16), 3473–3484.  https://doi.org/10.1016/j.watres.2004.04.054.CrossRefGoogle Scholar
  48. LaClair, J. B. (1946). Determination of 1-trichloro-2, 2-bis (p-chlorophenyl) ehtane in DDT dusts and oil solutions. Industrial & Engineering Chemistry Analytical Edition, 18(12), 763–766.CrossRefGoogle Scholar
  49. Lecce, S. A., & Pavlowsky, R. T. (1997). Storage of mining-related zinc in floodplain sediments, blue river, Wisconsin. Physical Geography, 18(5), 424–439.  https://doi.org/10.1080/02723646.1997.10642628.CrossRefGoogle Scholar
  50. Leenaers, H. (1989). The dispersal of metal mining wastes in the catchment of the River Geul (Belgium-The Netherlands). Retrieved from https://dspace.library.uu.nl/handle/1874/13821.
  51. Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P.-A., Müller, M. D., & Buser, H.-R. (2002). Occurence and environmental behaviour of the bactericide triclosan and its methyl derivative in surface waters and waste water. Environmental Science & Technology, 36(11), 2322–2329.  https://doi.org/10.1021/es0114254.CrossRefGoogle Scholar
  52. Lumpkin, M. H. (2015). Other halogenated hydrocarbons.In R. D. Harbison, M. M. Bourgeois, & Johnson G. T. (Eds.), Johnson, Hamilton & Hardy’s Industrial Toxicology (pp 567–580). Hoboken: John Wiley & Sons.Google Scholar
  53. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.  https://doi.org/10.1007/s002440010075.CrossRefGoogle Scholar
  54. Mackenzie, A. S., Brassell, S. C., Eglinton, G., & Maxwell, J. R. (1982). Chemical fossils: the geological fate of steroids. Science, 217(4559), 491–504.  https://doi.org/10.1126/science.217.4559.491.CrossRefGoogle Scholar
  55. Malmon, D. V., Dunne, T., & Reneau, S. L. (2002). Predicting the fate of sediment and pollutants in river floodplains. Environmental Science and Technology, 36(9), 2026–2032.  https://doi.org/10.1021/es010509+. CrossRefGoogle Scholar
  56. Marron, D. C. (1992). Floodplain storage of mine tailings in the Belle Fourche river system: a sediment budget approach. Earth Surface Processes and Landforms, 17(7), 675–685.  https://doi.org/10.1002/esp.3290170704.CrossRefGoogle Scholar
  57. Martin, C. W. (2015). Trace metal storage in recent floodplain sediments along the Dill River, Central Germany. Geomorphology, 235, 52–62.  https://doi.org/10.1016/J.GEOMORPH.2015.01.032.CrossRefGoogle Scholar
  58. Meharg, A. A., Wright, J., Leeks, G. J. L., Wass, P. D., Owens, P. N., Walling, D. E., & Osborn, D. (2003). PCB congener dynamics in a heavily industrialized river catchment. Science of the Total Environment, 314–316(3), 439–450.  https://doi.org/10.1016/S0048-9697(03)00067-6.CrossRefGoogle Scholar
  59. Meulen-Smidt, G. R. B. t. (1995). Regional differences in potentials for delayed mobilization of Chemicals in Europe. In W. Salomons & W. M. Stigliani (Eds.), Biogeodynamics of pollutants in soils and sediments (pp. 135–169). Berlin: Springer.CrossRefGoogle Scholar
  60. Mumbo, J., Pandelova, M., Mertes, F., Henkelmann, B., Bussian, B. M., & Schramm, K. W. (2016). The fingerprints of dioxin-like bromocarbazoles and chlorocarbazoles in selected forest soils in Germany. Chemosphere, 162, 64–72.  https://doi.org/10.1016/j.chemosphere.2016.07.056.CrossRefGoogle Scholar
  61. Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., & Takada, H. (2006). Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 40(17), 3297–3303.  https://doi.org/10.1016/j.watres.2006.06.039.CrossRefGoogle Scholar
  62. Owens, P. N., Walling, D. E., Carton, J., Meharg, A. A., Wright, J., & Leeks, G. J. L. (2001). Downstream changes in the transport and storage of sediment-associated contaminants (P, Cr and PCBs) in agricultural and industrialized drainage basins. Science of the Total Environment, 266(1–3), 177–186.  https://doi.org/10.1016/S0048-9697(00)00729-4.CrossRefGoogle Scholar
  63. Pies, C., Yang, Y., & Hofmann, T. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. Journal of Soils and Sediments, 7(4), 216–222.  https://doi.org/10.1065/jss2007.06.233.CrossRefGoogle Scholar
  64. Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T. A., & Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 72(10), 1594–1601.  https://doi.org/10.1016/j.chemosphere.2008.04.021.CrossRefGoogle Scholar
  65. Pye, K., & Blott, S. J. (2004). Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Science International, 144(1), 19–27.  https://doi.org/10.1016/j.forsciint.2004.02.028.CrossRefGoogle Scholar
  66. Reischl, A., Joneck, M., & Dumler-Gradl, R. (2005). Chlorcarbazole in Böden. UWSF Z Umweltchem Ökotox, 17(4), 197–200.  https://doi.org/10.1065/uwsf2005.10.105.CrossRefGoogle Scholar
  67. Reneau, S. L., Drakos, P. G., Katzman, D., Malmon, D. V., McDonald, E. V., & Ryti, R. T. (2004). Geomorphic controls on contaminant distribution along an ephemeral stream. Earth Surface Processes and Landforms, 29(10), 1209–1223.  https://doi.org/10.1002/esp.1085.CrossRefGoogle Scholar
  68. Ricking, M., & Schwarzbauer, J. (2012). DDT isomers and metabolites in the environment: an overview. Environmental Chemistry Letters, 10(4), 317–323.  https://doi.org/10.1007/s10311-012-0358-2.CrossRefGoogle Scholar
  69. Sahoo, P. K., Equeenuddin, S. M., & Powell, M. A. (2016). Trace elements in soils around coal mines: current scenario, impact and available techniques for management. Current Pollution Reports, 2(1), 1–14.  https://doi.org/10.1007/s40726-016-0025-5.CrossRefGoogle Scholar
  70. Salminen, R., Batista, M., Bidovec, M., & Demetriades, A. (2005). Geochemical atlas of Europe, part 1, background information, methodology and maps. Geological survey of Finland, Retrieved from http://bib.irb.hr/prikazi-rad?rad=210450.
  71. Schlör, H. (1970). Spezieller Teil: Chemie der Fungizide. In Chemie der Pflanzenschutz-und Schädlingsbekämpfungsmittel, (pp. 44–161). Vienna: Springer Vienna.  https://doi.org/10.1007/978-3-7091-4184-7_2.
  72. Schulte, E., & Malisch, R. (1983). Berechnung der wahren PCB-Gehalte in Umweltproben. Fresenius’ Journal of Analytical Chemistry, 314(6), 545–551 Retrieved from https://vpn.uni-giessen.de/+CSCO+0h756767633A2F2F6A6A6A2E6663657661747265797661782E70627A++/content/j7701441j7238876/fulltext.pdf.CrossRefGoogle Scholar
  73. Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze, J., & Stauch, G. (2016). Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess-paleosol-sequences. Catena, 137, 392–405.  https://doi.org/10.1016/j.catena.2015.10.015.CrossRefGoogle Scholar
  74. Schwarzbauer, J., & Jovančićević, B. (2016). From Biomolecules to Chemofossils. Springer.Google Scholar
  75. Schwarzbauer, J., Littke, R., & Weigelt, V. (2000). Identification of specific organic contaminants for estimating the contribution of the Elbe river to the pollution of the German bight. Organic Geochemistry, 31(12), 1713–1731.  https://doi.org/10.1016/S0146-6380(00)00076-0.CrossRefGoogle Scholar
  76. Schwarzbauer, J., Ricking, M., Franke, S., & Francke, W. (2001). Halogenated organic contaminants in sediments of the havel and spree rivers (Germany). Part 5 of organic compounds as contaminants of the Elbe river and its tributaries. Environmental Science and Technology, 35(20), 4015–4025.  https://doi.org/10.1021/es010084r.CrossRefGoogle Scholar
  77. Simon, C. (1999). DDT: Kulturgeschichte einer chemischen Verbindung. Retrieved from http://edoc.unibas.ch/13284/.
  78. SPECTRO, 2007. Analysis of trace elements in geological materials, soils and Sludges prepared as pressed pellets. (no. 39), SPECTRO XRF Report.Google Scholar
  79. Stelzer, H. (2011). Die Steinkohlenverarbeitung im Aachener Revier im 20. Jahrhundert (Teil I). Glückauf Bergbau und Energie - Berichte - Mitteilungen - Nachrichten, 34, 4–13.Google Scholar
  80. Suzuki, M., Matsumura, C., Moriguchi, Y., & Nakano, T. (2007). Investigation of mono-isopropylnaphthalene, and tri-isopropylnaphthalene in the environment around the paper recycling plant. Organohalogen Compounds, 69, 2910–2913.Google Scholar
  81. Swennena, R., Van der Sluysb, J., Hindelc, R., & Brusselmansa, A. (1998). Geochemistry of overbank and high-order stream sediments in Belgium and Luxembourg: a way to assess environmental pollution. Journal of Geochemical Exploration, 62(1), 67–79 Retrieved from http://www.sciencedirect.com/science/article/pii/S0375674297000563.CrossRefGoogle Scholar
  82. Takada, H., & Eganhouse, R. P. (1998). Molecular markers of anthropogenic waste. In R. A. Meyers (Ed.), The Encyclopedia of environmental analysis and remediation (p. 5400). Hobiken: John Wiley & Sons.Google Scholar
  83. Takada, H., & Ishiwatari, R. (1990). Biodegradation experiments of linear alkylbenzenes (LABs): Isomeric composition of C12 LABs as an Indicator of the degree of LAB degradation in the aquatic environment. Environmental Science and Technology, 24(1), 86–91.  https://doi.org/10.1021/es00071a009.CrossRefGoogle Scholar
  84. Takada, H., Satoh, F., Bothner, M. H., Tripp, B. W., Johnson, C. G., & Farrington, J. W. (1997). Anthropogenic molecular markers: tools to identify the sources and transport pathways of pollutants. ACS Symposium Series, 671, 178–195. https://doi.org/10.1021/bk-1997-0671.ch012\r10.1021/bk-1997-0671.ch012.Google Scholar
  85. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.  https://doi.org/10.1016/j.envpol.2011.10.025.CrossRefGoogle Scholar
  86. Tröbs, L., Henkelmann, B., Lenoir, D., Reischl, A., & Schramm, K. W. (2011). Degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole in soil. Environmental Science and Pollution Research, 18(4), 547–555.  https://doi.org/10.1007/s11356-010-0393-0.CrossRefGoogle Scholar
  87. UNEP (2012). 21 issues for the 21st century: results of the UNEP Foresight Process on Emerging Environmental issues. United Nations Environment Programme (UNEP), Nairobi, Kenya, (pp. 56). http://archive-ouverte.unige.ch.
  88. Valette-Silver, N. J. (1993). The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries, 16(3), 577.  https://doi.org/10.2307/1352796.CrossRefGoogle Scholar
  89. Walling, D. E., Owens, P. N., Carter, J., Leeks, G. J. L., Lewis, S., Meharg, A. A., & Wright, J. (2003). Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied Geochemistry, 18(2), 195–220.  https://doi.org/10.1016/S0883-2927(02)00121-X.CrossRefGoogle Scholar
  90. Warren, N., Allan, I. J., Carter, J. E., House, W. A., & Parker, A. (2003). Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Applied Geochemistry, 18(2), 159–194.CrossRefGoogle Scholar
  91. Witter, B., Winkler, M., & Friese, K. (2003). Depth distribution of chlorinated and polycyclic aromatic hydrocarbons in floodplain soils of the river. Acta Hydrochimica et Hydrobiologica, 31(45), 411–422.  https://doi.org/10.1002/aheh.200300501.CrossRefGoogle Scholar
  92. Wolf, H. (1977). Grevenbroich, Würselen und Eschweiler - Entwicklungs- und Strukturvergleich dreier linksrheinischer Mittelstädte, Aachener Geographische Arbeiten. Aachen: Geographisches Institut der RWTH Aachen im Selbstverlag.Google Scholar
  93. Wyzga, B., & Ciszewski, D. (2010). Hydraulic controls on the entrapment of heavy metal-polluted sediments on a floodplain of variable width, the upper Vistula River, southern Poland. Geomorphology, 117(3–4), 272–286.  https://doi.org/10.1016/j.geomorph.2009.01.016.CrossRefGoogle Scholar
  94. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin a critical appraisal of PAH ratio as indicators of PAH source and composition-NO.2.Pdf. Organic Geochemistry, 33, 489–515.  https://doi.org/10.1017/CBO9781107415324.004.CrossRefGoogle Scholar
  95. Zeng, E. Y., & Charlie, C. Y. (1996). Measurements of linear alkylbenzenes by GC/MS with interference from tetrapropylene-based alkylbenzenes: calculation of quantitation errors using a two-component model. Environmental Science and Technology, 30(1), 322–328.  https://doi.org/10.1021/es9504045.CrossRefGoogle Scholar
  96. Zennegg, M., Kohler, M., Hartmann, P. C., Sturm, M., Gujer, E., Schmid, P., & Giger, W. (2007). The historical record of PCB and PCDD/F deposition at Greifensee, a lake of the Swiss plateau, between 1848 and 1999. Chemosphere, 67(9), 1754–1761.  https://doi.org/10.1016/j.chemosphere.2006.05.115.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lukas Hagemann
    • 1
  • Michael Buchty-Lemke
    • 2
  • Frank Lehmkuhl
    • 2
  • Jannika Alzer
    • 1
  • Eberhard Andreas Kümmerle
    • 3
  • Jan Schwarzbauer
    • 1
  1. 1.Institute for Geology and Geochemistry of Petroleum and CoalRWTH Aachen UniversityAachenGermany
  2. 2.Department of GeographyRWTH Aachen UniversityAachenGermany
  3. 3.Department of Safety and Radiation Protection, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations