Advertisement

Lead Isotopic Composition of Overbank Sediments in Areas with Different Anthropogenic and Lithological Characteristics

  • Paula Adánez SanjuánEmail author
  • Belinda Flem
  • Juan F. Llamas Borrajo
  • Ángel García Cortés
  • Juan Locutura Rupérez
Article
  • 116 Downloads

Abstract

Metals in overbank deposits may originate from natural or anthropogenic sources. The objective of this work is to study the anthropogenic influence over these deposits through the study of Pb contents together with Pb isotopic ratios in a group of selected overbank profiles sampled in several basins across Spain. The 16 selected overbank profiles show specific characteristics, due to land use (anthropogenic activity developed in the area where a profile is located), as well as the lithologies that supply material to the sediments. These profiles are expected to present some kind of anthropogenic influence as a consequence of mining, industrial, urban, or agricultural activities, while two profiles were sampled in areas where population is scarce and no significant impact is likely. The elements Pb, U, and Th were analyzed as well as the isotopic ratios of 206Pb, 207Pb, and 208Pb. Lead ratios and Pb contents were used in this work as a tool to trace Pb origin (natural or anthropogenic) in the studied profiles. This study offers an overview of the ranges that can be reached by Pb contents and by Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) under several contrasting conditions. Lead contents vary from 12.7 to > 5000 mg/kg and 206Pb/207Pb ratio from 1.162 to 1.407. It was proven that the anthropogenic activity is reflected in some of the overbank profiles, showing a variation in Pb contents that agrees with shifts in the isotopic ratios. These changes are more relevant in urban areas, while in mining areas, changes are weaker. It was also proven that the Pb contents and Pb ratios are heavily dominated by the geology too.

Keywords

Geochemistry Overbank sediments Pb isotopes Pollution 

Notes

Acknowledgements

The authors would like to thank the Geological Survey of Norway (NGU), especially Rolf Tore Ottesen and Pål Gundersen as well as the Laboratory team and the Geochemistry Division for the Pb isotope analysis and the technical assistance during the corresponding author’s research stay.

Funding information

This work was financed by a Geological Survey of Spain (IGME) pre-doctoral fellowship.

References

  1. Adánez, P. (2012). La geoquímica de los sedimentos de llanuras de inundación como guía para la valoración ambiental en España. PhD Thesis. Universidad Politécnica de Madrid.Google Scholar
  2. Adánez Sanjuán, P., Llamas Borrajo, J., Locutura Rupérez, J., & García Cortés, A. (2014a). A geochemical study of overbank sediments in an urban area (Madrid, Spain). Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-014-9624-5.
  3. Adánez Sanjuán, P., Llamas Borrajo, J., Locutura Rupérez, J., & García Cortés, A. (2014b). Estudio geoquímico de los sedimentos de llanura de inundación en la cuenca de los ríos Tinto y Odiel (Huelva). Boletín Geológico y Minero, 125(4), 585–599.Google Scholar
  4. Adánez Sanjuán, P., Flem, B., Llamas Borrajo, J., Locutura Rupérez, J., & García Cortés, A. (2016). Application of lead isotopic methods to the study of the anthropogenic lead provenance in Spanish overbank floodplain deposits. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-015-9732-x.
  5. Bird, G. (2011). Provenancing anthropogenic Pb within the fluvial environment: developments and challenges in the use of Pb isotopes. Environment International.  https://doi.org/10.1016/j.envint.2011.02.007.
  6. Bollhöfer, A., & Rosman, K. J. R. (2001). Isotopic source signatures for atmospheric lead: the northern hemisphere. Geochimica et Cosmochimica Acta.  https://doi.org/10.1016/S0016-7037(00)00630-X.
  7. Couvier, A., Pourcelot, L., Probst, A., Prunier, J., & Le Roux, G. (2016). Trace elements and Pb isotopes in soils and sedments impacted by uranium mining. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2016.04.213.
  8. De la Cruz, M. T., Laborda, F., Callén, M. S., López, J. M., & Mastral, A. M. (2009). Study of Pb sources by Pb isotope ratios in the airborne PM10 of Zaragoza, Spain. Journal of Environmental Monitoring.  https://doi.org/10.1039/b912274e.
  9. Doe, B. R. (1970). Lead isotopes. Berlin: Springer Verlag.CrossRefGoogle Scholar
  10. Doe, B. R., & Delevaux, M. H. (1972). Source of lead in Southeast Missouri galena ores. Economic Geology.  https://doi.org/10.2113/gsecongeo.67.4.409.
  11. Ellam, R. M. (2010). The graphical presentation of lead isotope data for environmental source apportionment. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2010.03.037.
  12. Faure, G. (1977). Principles of isotope geology. New York: Wiley.Google Scholar
  13. Gallego, J. R., Rodríguez-Valdés, E., Esquinas, N., Fernández-Braña, A., & Afif, E. (2016). Insights into a 20-ha multi-contaminated brownfield megasite: an environmental forensics approach. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2015.09.153.
  14. He, Q., & Walling, D. E. (1997). Spatial variability of the particle size composition of overbank floodplain deposits. Water, Air and Soil Pollution.  https://doi.org/10.1007/BF02406846.
  15. Hernández Sobrino, A. M. (1992). El mercurio: Sus yacimientos y factores económicos. In J. García Guinea & J. Martínez Frías (Eds.), Recursos minerales de España (pp. 731–758). Madrid: Consejo Superior de Investigaciones Científicas.Google Scholar
  16. Higueras, P., Oyarzun, R., Biester, H., Lillo, J., & Lorenzo, S. (2003). A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. Journal of Geochemical Exploration.  https://doi.org/10.1016/S0375-6742(03)00185-7.
  17. Higueras, P., Munhá, J., Oyarzun, R., Tassinari, C. C. G., & Ruiz, I. R. (2005). First lead isotopic data for cinnabar in the Almadén district (Spain): implications for the genesis of the mercury deposits. Mineralium Deposita.  https://doi.org/10.1007/s00126-005-0471-2.
  18. Huertas, E., Folch, M., Salgot, M., Gonzalvo, I., & Passarell, C. (2006). Constructed wetlands effluent for streamflow augmentation in the Besós River (Spain). Desalination.  https://doi.org/10.1016/j.desal.2005.04.111.
  19. Irabien, M. J., Cearreta, A., Leorri, E., Gómez, J., & Viguri, J. (2008). A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): implications for environmental management. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2008.07.006.
  20. Komárek, M., Ettler, V., Chrastný, V., & Mihaljevic, M. (2008). Lead isotopes in environmental sciences: a review. Environment International.  https://doi.org/10.1016/j.envint.2007.10.005.
  21. Langedal, M. (1996). Fluvial dispersion of particle-bound heavy metals: an evaluation of overbank sediments as sampling medium for regional geochemical mapping and environmental studies. Ph.D. Thesis, Norges Teknisk- Naturvitenskapelige Univ. Trondheim.Google Scholar
  22. Locutura, J., Bel-Lan, A., García Cortés, A., & Martínez, S. (2012). Atlas geoquímico de España. Madrid: Instituto Geológico y Minero de España.Google Scholar
  23. Marcoux, E. (1998). Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt. Mineralium Deposita.  https://doi.org/10.1007/s001260050132.
  24. Miller, J. R. (2013). Forensic assessment of metal contaminated rivers in the 21st century using geochemical and isotopic tracers. Minerals.  https://doi.org/10.3390/min3020192.
  25. Monna, F., Lancelot, J., Corudace, I. W., Cundy, A. B., & Lewis, J. T. (1997). Pb isotopic composition of airborne particulate material from France and southern united Kingdom: Implications for Pb Pollution Sources in Urban Areas. Environmental Science and Technology.  https://doi.org/10.1021/es960870+.
  26. Monna, F., Hamer, K., Lévêque, J., & Sauer, M. (2000). Pb isotopes as a reliable marker of early mining and smelting in the northern Harz province (lower Saxony, Germany). Journal of Geochemical Exploration.  https://doi.org/10.1016/S0375-6742(00)00005-4.
  27. Ottesen, R. T., Bogen, J., Bolviken, B., & Volden, T. (1989). Overbank sediment: a representative sample medium for regional geochemical mapping. Journal of Geochemical Exploration.  https://doi.org/10.1016/0375-6742(89)90061-7.
  28. Pomiès, C., Cocherie, A., Guerrot, C., Marcoux, E., & Lancelot, J. (1998). Assessment of the precision and accuracy of lead-isotope ratios measured by TIMS for geochemical applications: example of massive sulphide deposits (Río Tinto, Spain). Chemical Geology.  https://doi.org/10.1016/S0009-2541(97)00127-7.
  29. Reimann, C., Flem, B., Arnoldussen, A., Englmaier, P., Finne, T. E., Koller, F., & Nordgulen, O. (2008). The biosphere: a homogeniser of Pb-isotope signals. Applied Geochemistry.  https://doi.org/10.1016/j.apgeochem.2007.12.002.
  30. Reimann, C., Smith, D. B., Woodruff, L. G., & Flem, B. (2011). Pb-concentrations and Pb-isotope ratios in soils collected along an east-west transect across the United States. Applied Geochemistry.  https://doi.org/10.1016/j.apgeochem.2011.04.018.
  31. Salminen, R., Tarvainen, T., Demetriades, A., Duris, M., Fordyce, F. M., Gregorauskiene, V., Kahelin, H., Kivisilla, J., Klaver, G., Klein, H., Larson, J. O., Lis, J., Locutura, J., Marsina, K., Mjartanova, H., Mouvet, C., O’Connor, P., Odor, L., Ottonello, G., Paukola, T., Plant, J. A., Reimann, C., Schermann, O., Siewers, U., Steenfelt, A., Van der Sluys, J., De Vivo, B., & Williams, L. (1998). FOREGS Geochemical Mapping Field Manual. Espoo: Geological Survey of Finland.Google Scholar
  32. Sangster, D. F., Outridge, P. M., & Davis, W. J. (2000). Stable lead isotopes characteristics of lead ore deposits of environmental significance. Environmental Reviews.  https://doi.org/10.1139/a00-008.
  33. Serrano, H., Cearreta, A., Irabien, M. J., & Gómez Arozamena, J. (2016). Impacto humano en la ría de Suances (Cantabria): indicadores geoquímicos y microfaunísticos en los sedimentos actuales. Geogaceta, 60, 63–66.Google Scholar
  34. Slawson, W. F., & Russel, R. D. (1967). Common lead isotope abundances. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 77–108). New York: The Pennsylvania State University.Google Scholar
  35. Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters.  https://doi.org/10.1016/0012-821X(75)90088-6.
  36. Stos-Gale, Z., Gale, N., Houghton, J., & Speakman, R. (1995). Lead isotope data from the isotrace laboratory, Oxford: Archaeometry data base 1, ores from the western Mediterranean. Archaeometry.  https://doi.org/10.1111/j.1475-4754.1995.tb00753.x.
  37. Swennen, R., Van der Sluys, J., Hindel, R., & Brusselmans, A. (1998). Geochemistry of overbank and high-order stream sediments in Belgium and Luxembourg: a way to assess environmental pollution. Journal of Geochemical Exploration.  https://doi.org/10.1016/S0375-6742(97)00056-3.
  38. Vallés, S. M., Cambrollé, J., Castillo, J. M., Curado, G., Mancilla-Leytón, J. M., & Figueroa-Clemente, M. E. (2017). Handling High Soil Trace Elements Pollution: Case Study of the Odiel and Tinto Rivers Estuary and the Accompanying Salt Marshes (Southwest Iberian Peninsula). In C. Finkl & C. Makowski (Eds.), Coastal wetlands: Alteration and remediation, Coastal Research Library (Vol. 21, pp. 215–241). Cham: Springer.  https://doi.org/10.1007/978-3-319-56179-0_7.CrossRefGoogle Scholar
  39. Velasco, F., Pesquera, A., & Herrero, J. M. (1996). Lead isotopes study of Zn-Pb ore deposits associated with the Basque-Cantabrian basin and Paleozoic basement, northern Spain. Mineralium Deposita.  https://doi.org/10.1007/BF00225398.
  40. Zuluaga, M. C., Norini, G., Ayuso, R., Nieto, J. M., Lima, A., Albanese, S., & De Vivo, B. (2017). Geochemical mapping, environmental assessment and Pb isotopic signatures of geogenic and anthropogenic sources in three localities in SW Spain with different land use and geology. Journal of Geochemical Exploration.  https://doi.org/10.1016/j.gexplo.2017.07.011.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Geológico y Minero de España (IGME)MadridSpain
  2. 2.Geological Survey of Norway (NGU)TrondheimNorway
  3. 3.E.T.S.I. Minas MadridMadridSpain

Personalised recommendations