Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Microbial Sorption of Uranium Using Amycolatopsis sp. K47 Isolated from Uranium Deposits

Abstract

The increasing contamination of soils, sediments, and water with heavy metals through natural and industrial processes is a worldwide problem. Mining processes produce tons of material contaminated with radionuclides such as U and different heavy metals such as Cd, Ni, and Pb. U(VI) adsorbs strongly on bacteria, exhibiting pH-dependent adsorption behavior that is caused by a range of uranyl surface complexes on bacteria cell walls. The Amycolatopsis sp. K47 was isolated from Manisa Koprubasi Kasar open-cast uranium mine and identified for the first time. Using the batch adsorption method, the biosorption potential of this microbe was investigated by studying the effects of changes in pH (1–10), biomass dose (0.1–5 g/l), initial uranium metal concentration (5–200 mg/l), contact time (5–180 min), and temperature (20–60 °C). Interpretation of FTIR data obtained for both the uranium loaded and unloaded Amycolatopsis sp. K47 biomass showed the presence of carboxylic acid, hydroxyl, and amide functional groups that could interact with uranium ions. Scanning electron microscopy images demonstrated that uranium was intensely adsorbed on the microbial biomass surface. The sorption isotherms were investigated by analysis of the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) models. The Langmuir isotherm model was found to show the best fit for the experimental data obtained. Furthermore, thermodynamic parameters, such as ΔH°, ΔS°, and ΔG°, were calculated using adsorption equilibrium constant obtained from the Langmuir isotherm. The optimal experimental conditions were determined to be pH = 4, C0 = 40 ppm, t = 150 min, temp. = 40 °C, and abs. dose = 1 g/l, and the corresponding U(VI) removal efficiency was about 97 ± 2%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abd El Hameeda, A. H., Wedad, E. E., Abou-Taleba, K. A. A., & Mirab, H. I. (2015). Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Annals of Agricultural Sciences, 60(2), 345–351. https://doi.org/10.1016/j.aoas.2015.10.003.

  2. Aytas, S., Sezer, H., & Gok, C. (2015). Characterization of Cystoseira sp. for the isolation of uranium. Analytical Letters, 49(4), 523–540. https://doi.org/10.1080/00032719.2015.1076832.

  3. Bleise, A., Danesi, P. R., & Burkart, W. (2002). Properties, use and health effects of depleted uranium (DU): a general overview. Journal of Environmental Radioactivity, 64, 93–112.

  4. Chhikara, S., Hooda, A., Rana, L., & Dhankhar, R. (2010). Chromium (VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis. Journal of Environmental Biology, 31(5), 561–566.

  5. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., et al. (1997). Removal of uranium from water using terrestrial plants. Environmental Science Technology, 31(12), 3468–3474. https://doi.org/10.1021/es970220l.

  6. Embley, M. T., Smida, J., & Stackebrandt, E. (1988). The phylogeny of mycolate-less wall chemotype-iv actinomycetes and description of Pseudonocardiaceae Fam-Nov. Systematic and Applied Microbiology, 11(1), 44–52.

  7. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376.

  8. Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125(1), 1–15.

  9. Fetter, S., & Von Hippel, F. N. (1999). The hazard posed by depleted uranium munitions. Science & Global Security, 1999, 8(2), 125–161.

  10. Gok, C., & Aytas, S. (2009). Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. Journal of Hazardous Materials, 168(1), 369–375. https://doi.org/10.1016/j.jhazmat.2009.02.063.

  11. Gok, C., Turkozu, D. A., & Aytas, S. (2010). Removal of Th(IV) ions from aqueous solution using bi-functionalized algae-yeast biosorbent. Journal of Radioanalytical and Nuclear Chemistry, 287(2), 533–541. https://doi.org/10.1007/s10967-010-0788-x.

  12. Gok, C., Gerstmann, U., Hollriegl, V., & Aytas, S. (2013). Preparation of Ca-alginate biopolymer beads and investigation of their decorporation characteristics for 85Sr, 238U and 234Th by in vitro experiments. Radiation Protection Dosimetry, 153(1), 47–55. https://doi.org/10.1093/rpd/ncs088.

  13. Gunther, A., Raff, J., Geipel, G., & Bernhard, G. (2008). Spectroscopic investigations of U(VI) species sorbed by the green algae Chlorella vulgaris. Biometals, 21(3), 333–341. https://doi.org/10.1007/s10534-007-9122-7.

  14. Hu, M. Z., Norman, J. M., Faison, B. D., & Reeves, M. E. (1996). Biosorption of uranium by Pseudomonas aeruginosa strain CSU: characterization and comparison studies. Biotechnology and Bioengineering, 51(2), 237–247. https://doi.org/10.1002/(SICI)1097-0290(19960720)51:2<237::AID-BIT14>3.0.CO;2-J.

  15. Kavak, D. (2009). Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design. Journal of Hazardous Materials, 163(1), 308–314. https://doi.org/10.1016/j.jhazmat.2008.06.093.

  16. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., et al. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721. https://doi.org/10.1099/ijs.0.038075-0.

  17. Kluge, A. G., & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18, 1–32.

  18. Kutahyali, C., & Eral, M. (2010). Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. Journal of Nuclear Materials, 396(1–2), 251–256.

  19. Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics (pp. 115–175). Chichester: John Wiley and Sons.

  20. Li, H., Liu, T., Li, Z., & Deng, L. (2008). Low-cost supports used to immobilize fungi and reliable technique for removal hexavalent chromium in wastewater. Bioresource Technology, 99, 2234–2241.

  21. Li, X., Ding, C., Liao, J., Du, L., Sun, Q., Yang, J., et al. (2016). Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. Journal of Environmental Sciences (China), 41, 162–171. https://doi.org/10.1016/j.jes.2015.06.007.

  22. Lloyd, N. S., Mosselmans, J. F. W., Parrish, R. R., Chenery, S. R. N., Hainsworth, S. V., & Kemp, S. J. (2009). The morphologies and compositions of depleted uranium particles from an environmental case study. Mineralogical Magazine, 73(3), 495–510.

  23. Mayers, I. T., & Beveridge, T. J. (1989). The sorption of metals to Bacillus subtilis walls from dilute solutions and simulated Hamilton Harbour (Lake Ontario) water. Canadian Journal of Microbiology, 35(8), 764–770. https://doi.org/10.1139/m89-128.

  24. Niazi, A., Ghasemi, N., Goodarzi, M., & Ebadi, A. (2007). Simultaneous spectrophotometric determination of uranium and thorium using Arsenazo III by H-point standard addition method and partial least squares regression. Journal of the Chinese Chemical Society, 54(2), 411–418. https://doi.org/10.1002/jccs.200700058.

  25. Parrish, R. R., Horstwood, M., Arnason, J. G., Chenery, S., Brewer, T., Lloyd, N. S., et al. (2008). Depleted uranium contamination by inhalation exposure and its detection after approximately 20 years: implications for human health assessment. Science of the Total Environment, 390(1), 58–68. https://doi.org/10.1016/j.scitotenv.2007.09.044.

  26. Payne, T. E. (2010). Uranium. In D. A. Atwood (Ed.), Radionuclides in the environment (pp. 261–272). Chichester: John Wiley & Sons Ltd.

  27. Qadeer, R., & Saleem, M. (1997). Adsorption of UO22+ ions on activated charcoal: pH effect. Adsorption Science & Technology, 15(5), 373–376. https://doi.org/10.1177/026361749701500505.

  28. Riordan, C., Bustard, M., Putt, R., & McHale, A. P. (1997). Removal of uranium from solution using residual brewery yeast: combined biosorption and precipitation. Biotechnology Letters, 19(4), 385–387.

  29. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

  30. Sert, Ş., & Eral, M. (2010). Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method. Journal of Nuclear Materials, 406(3), 285–292. https://doi.org/10.1016/j.jnucmat.2010.08.024.

  31. Silva, J. I. R., de Melo Ferreira, A. C., & da Costa, A. C. A. (2009). Uranium biosorption under dynamic conditions: Preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg. Journal of Radioanalytical and Nuclear Chemistry, 279(3), 909–914. https://doi.org/10.1007/s10967-008-7366-5.

  32. Sorg, T. J. (1991). Removal of uranium from drinking water by conventional treatment methods. In C. A. Rebers (Ed.), Radon, Radium and Uranium in Drinking Water (pp. 173–191). Michigan: Lewis Publishers.

  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197.

  34. Tang, L., Yoon, Y. J., Choi, C. Y., & Hutchinson, C. R. (1998). Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene, 216(2), 255–265. https://doi.org/10.1016/S0378-1119(98)00338-2.

  35. Tsuruta, T. (2003). Accumulation of uranyl and thorium by microorganism. Journal General and Application Microbiology, 49, 215–218.

  36. Tsuruta, T. (2006). Accumulation of thorium and uranium by microbes—the effect of pH, concentration of metals, and time course on the accumulation of both elements using Streptomyces levoris. Journal of Nuclear and Radiochemical Sciences, 7, 1–6.

  37. Tsuruta, T. (2011). Biosorption of uranium for environmental applications using bacteria isolated from the uranium deposits. In I. Ahmad, F. Ahmad, & J. Pichtel (Eds.), Microbes and Microbial Technology (pp. 267–281). New York: Springer.

  38. Volesky, B. (1990). Biosorption of heavy metals (pp. 408). Boca Raton: CRC Press.

  39. Wink, J. M., Kroppenstedt, R. M., Ganguli, B. N., Nadkarni, S. R., Schumann, P., Seibert, G., et al. (2003). Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp nov., A-tolypomycina sp nov., A-vancoresmycina sp nov., and description of Amycolatopsis keratiniphila subsp keratiniphila subsp nov and A-keratiniphila subsp nogabecina subsp nov. Systematic and Applied Microbiology, 26(1), 38–46. https://doi.org/10.1078/072320203322337290.

  40. Xiaozhi Zhang, S. L., Yang, Q., Zhang, H., & Li, J. (1997). Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. Journal of Applied Phycology, 9, 65–71.

  41. Xu, J., Mahmud, T., & Floss, H. G. (2003). Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Archives of Biochemistry and Biophysics, 411(2), 277–288. https://doi.org/10.1016/S0003-9861(03)0004-3.

  42. Yang, H. B., Tan, N., Wu, F. J., Liu, H. J., Sun, M., She, Z. G., et al. (2012). Biosorption of uranium(VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. Journal of Radioanalytical and Nuclear Chemistry, 292(3), 1011–1016. https://doi.org/10.1007/s10967-011-1552-6.

  43. Yee, N., Benning, L. G., Phoenix, V. R., & Ferris, F. G. (2004). Characterization of metalcyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environmental Science & Technology, 38, 775–782.

  44. Yusan, S. D., & Akyil, S. (2008). Sorption of uranium(VI) from aqueous solutions by akaganeite. Journal of Hazardous Materials, 160(2–3), 388–395. https://doi.org/10.1016/j.jhazmat.2008.03.009.

  45. Yusan, S., Aslani, M. A. A., Turkozu, D. A., Aycan, H. A., Aytas, S., & Akyil, S. (2010). Adsorptionand thermodynamic behaviour of U(VI) on the tendurek volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry, 283(1), 231–238. https://doi.org/10.1007/s10967-009-0312-3.

Download references

Acknowledgements

This study is supported by Scientific Research Unit of Munzur University under grant MFTUB019-26.

Dr. Kwaku Kyeremeh is grateful to the Cambridge-Africa Partnership for Research Excellence (CAPREx)—funded by the Carnegie Corporation of New York, for the award of a Postdoctoral Fellowship and Cambridge-Africa ALBORADA Research Fund at the University of Cambridge.

Author information

Correspondence to Fatih Celik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celik, F., Camas, M., Kyeremeh, K. et al. Microbial Sorption of Uranium Using Amycolatopsis sp. K47 Isolated from Uranium Deposits. Water Air Soil Pollut 229, 112 (2018). https://doi.org/10.1007/s11270-018-3766-5

Download citation

Keywords

  • Pollution
  • Wastewater
  • Microbial sorption
  • Heavy metals
  • Isotherms