Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of Graphene Oxide on the Characteristics and Mechanisms of Phosphorus Removal in Aerobic Granular Sludge: Case Report

  • 275 Accesses

  • 2 Citations

Abstract

Effects of graphene oxide (GO) on phosphorus removal characteristics and mechanisms of aerobic granular sludge (AGS) were investigated in controlled batch tests. The scanning electron microscope (SEM) image results showed that the surface of AGS appeared wrinkled with coccus and bacillus brevis being wizened and the fungal mycelium being cut into pieces in AGS with 0.06 g/L GO. The anaerobic and aerobic batch tests suggested that the net phosphorus uptake of AGS was 2.60 mg/L for AGS with GO, compared with the value (4.38 mg/L) without GO, and the maximum release and uptake phosphorus rates also remarkably decreased. Intracellular and extracellular phosphorus contents were reduced to 64.67 and 19.74% of that without GO, indicating the nanoparticle might have great effects on extracellular phosphorus. The standards, measurements, and testing (SMT) analysis suggested that the inorganic phosphorus (IP) and organic phosphorus (OP) content decreased compared with the values without GO. The summation of phosphorus fraction associated with Ca (Ca-P) and the phosphorus fraction associated with Al, Fe, and Mn (Fe/Al-P) were 82.09% (without GO) and 94.27% (with GO), suggesting the presence of GO resulted in the decrease of content and species of IP. The extracellular polymeric substances (EPS) were reduced from 173.68 mg/g MLVSS to 137.55 mg/g MLVSS when AGS contacted with GO. The results of this assay had uncovered that 0.06 g/L GO could inhibit the bioactivity of phosphorus-accumulating organisms (PAOs), which resulted in the decrease of Ca-P, Fe/Al-P, and OP. EPS played an essential role on the phosphorus removal and granular stability. The decrease of EPS, which was produced by microorganisms, was contributed to decrease of extracellular phosphorus. This study provided an extensive insight into the influence of GO on phosphorus removal mechanism by AGS.

The influence of graphene oxide on the extracellular polymeric substances and phosphorus species

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adav, S. S., Lee, D. J., & Tay, J. H. (2008). Extracellular polymeric substances and structural stability of aerobic granule. Water Research, 42(6–7), 1644–1650.

  2. Ahlgren, J., Tranvik, L., Gogoll, A., Waldeback, M., Markides, K., & Rydin, E. (2005). Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR. Environmental Science & Technology, 39(3), 867–872.

  3. Ahmed, F., & Rodrigues, D. F. (2013). Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. Journal of Hazardous Materials, 256-257, 33–39.

  4. Amirov, R. R., Shayimova, J., Nasirova, Z., & Dimiev, A. M. (2017). Chemistry of graphene oxide. Reactions with transition metal cations. Carbon, 116, 356–365.

  5. APHA. (2005). Standard methods for the examination of water and wastewater, twenty-first ed. Washington, D.C.: American Public Health Association.

  6. Barat, R., Montoya, T., Seco, A., & Ferrer, J. (2005). The role of potassium, magnesium and calcium in the enhanced biological phosphorus removal treatment plants. Environmental Technology, 26(9), 983–992.

  7. Barroso-Bujans, F., Cerveny, S., Verdejo, R., del Val, J. J., Alberdi, J. M., Alegría, A., & Colmenero, J. (2010). Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon, 48(4), 1079–1087.

  8. Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., & Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, 33(10), 2283–2290.

  9. Bharath, G., Alhseinat, E., Ponpandian, N., KhEan, M. A., Siddiqui, M. R., Ahmed, F., & Alsharaeh, E. H. (2017). Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites. Separation and Purification Technology, 188, 206–218.

  10. Cassidy, D. P., & Belia, E. (2005). Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research, 39(19), 4817–4823.

  11. Chang, Y. L., Yang, S. T., Liu, J. H., Dong, E., Wang, Y. W., Cao, A. N., Liu, Y. F., & Wang, H. F. (2011). In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 200(3), 201–210.

  12. Choi, H. J., Yu, S. W., Lee, S. M., & Yu, S. Y. (2011). Effects of potassium and magnesium in the enhanced biological phosphorus removal process using a membrane bioreactor. Water Environment Research, 83(7), 613–621.

  13. Cloete, T. E., & Oosthuizen, D. J. (2001). The role of extracellular exopolymers in the removal of phosphorus from activated sludge. Water Research, 35(15), 3595–3598.

  14. de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90(6), 761–769.

  15. de Kreuk, M. K., Picioreanu, C., Hosseini, M., Xavier, J. B., & van Loosdrecht, M. C. M. (2007). Kinetic model of a granular sludge SBR: influences on nutrient removal. Biotechnology and Bioengineering, 97(4), 801–815.

  16. Deng, S., Wang, L. X., & Su, H. J. (2016). Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge. Journal of Environmental Management, 173, 49–54.

  17. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10(3), 751–758.

  18. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240.

  19. Frølund, B., Griebe, T., & Nielsen, P. H. (1995). Enzymatic-activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 43(4), 755–761.

  20. Gaudy, A. (1962). Colorimetric determination of protein and carbohydrate. Industrial Water Wastes, 7, 17–27.

  21. Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530–1534.

  22. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

  23. González Medeiros, J. J., Pérez Cid, B., & Fernández Gómez, E. (2005). Analytical phosphorus fractionation in sewage sludge and sediment samples. Analytical and Bioanalytical Chemistry, 381(4), 873–878.

  24. Goyal, D., Zhang, X. J., & Rooney-Varga, J. N. (2010). Impacts of single-walled carbon nanotubes on microbial community structure in activated sludge. Letters in Applied Microbiology, 51(4), 428–435.

  25. Gu, A., Stensel, H. D., Neethling, J., Benisch, M., Stephens, H., & Jenkins, D. (2004). Evaluation of metal cation stoichiometry with biological phosphorus removal in full-scale EBPR processes. Proceedings of the Water Environment Federation. https://doi.org/10.2175/193864704784131608.

  26. Huang, W. L., Cai, W., Huang, H., Lei, Z. F., Zhang, Z. Y., Tay, J. H., & Lee, D. J. (2015a). Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge. Water Research, 68, 423–431.

  27. Huang, W. L., Huang, W. W., Li, H. F., Lei, Z. F., Zhang, Z. Y., Tay, J. H., & Lee, D. J. (2015b). Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge. Bioresource Technology, 193, 549–552.

  28. Jung, J. H., Cheon, D. S., Liu, F., Lee, K. B., & Seo, T. S. (2010). A graphene oxide based immuno-biosensor for pathogen detection. Angewandte Chemie International Edition, 49(33), 5708–5711.

  29. Kästner, M., & Hofrichter, M. (2001). Biodegradation of humic substances. Biopolymers Online, 1, 349–378.

  30. Katsumiti, A., Tomovska, R., & Cajaraville, M. P. (2017). Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Aquatic Toxicology, 188, 138–147.

  31. Lee, M., & Kim, D. J. (2017). Identification of phosphorus forms in sewage sludge ash during acid pre-treatment for phosphorus recovery by chemical fractionation and spectroscopy. Journal of Industrial and Engineering Chemistry, 51, 64–70.

  32. Li, N., Ren, N. Q., Wang, X. H., & Kang, H. (2010). Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process. Bioresource Technology, 101(15), 6265–6268.

  33. Li, Y., Zou, J., Zhang, L., & Sun, J. (2014). Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater. Bioresource Technology, 154, 178–184.

  34. Lightcap, I. V., Kosel, T. H., & Kamat, P. V. (2010). Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Letters, 10(2), 577–583.

  35. Lin, Y. M., Liu, Y., & Tay, J. H. (2003). Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Applied Microbiology and Biotechnology, 62(4), 430–435.

  36. Lin, Y. M., Bassin, J. P., & van Loosdrecht, M. C. M. (2012). The contribution of exopolysaccharides induced struvites accumulation to ammonium adsorption in aerobic granular sludge. Water Research, 46(4), 986–992.

  37. Liu, Y. Q., Liu, Y., & Tay, J.-H. (2004). The effects of extracellular polymeric substances on the formation and stability of biogranules. Applied Microbiology and Biotechnology, 65(2), 143–148.

  38. Liu, Y. N., Xue, G., Yu, S. L., & Zhao, F. B. (2006). Role of extracellular exopolymers on biological phosphorus removal. Journal of Environmental Sciences (China), 18(4), 670–674.

  39. Long, X. Y., Tang, R., Fang, Z. D., Xie, C. X., Li, Y. Q., & Xian, G. (2017). The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal. Chemosphere, 189, 679–688.

  40. Luongo, L. A., & Zhang, X. Q. (2010). Toxicity of carbon nanotubes to the activated sludge process. Journal of Hazardous Materials, 178(1–3), 356–362.

  41. Manas, A., Biscans, B., & Spérandio, M. (2011). Biologically induced phosphorus precipitation in aerobic granular sludge process. Water Research, 45(12), 3776–3786.

  42. Maurer, M., Abramovich, D., & Siegrist, H. (1999). Kinetics of biologically induced phosphorus precipitation in waste-water treatment. Water Research, 33(2), 484–493.

  43. Nancharaiah, Y. V., & Kiran Kumar Reddy, G. (2017). Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.09.131.

  44. Papageorgiou, D. G., Kinloch, L. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75–127.

  45. Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascón, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560–10564.

  46. Poorasgari, E., König, K., Fojan, P., Keiding, K., & Christensen, M. L. (2014). Fouling of enhanced biological phosphorus removal–membrane bioreactors by humic-like substances. Chemosphere, 117, 144–150.

  47. Seviour, T., Yuan, Z. G., van Loosdrecht, M. C. M., & Lin, Y. M. (2012). Aerobic sludge granulation: a tale of two polysaccharides. Water Research, 46(15), 4803–4813.

  48. Sheng, G. P., Yu, H. Q., & Li, X. Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances, 28(6), 882–894.

  49. Soleimani, K., Tehrani, A. D., & Adeli, M. (2018). Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal. Ecotoxicology and Environmental Safety, 147, 34–42.

  50. Soliman, M., & Eldyasti, A. (2017). Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactor (SBR). Bioresource Technology, 233, 382–390.

  51. Song, Y. J., Qu, K. G., Zhao, C., Ren, J. S., & Qu, X. G. (2010). Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Advanced Materials, 22(10), 2206–2210.

  52. Sun, X. M., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. J. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1(3), 203–212.

  53. Tay, J.-H., Liu, Q.-S., & Liu, Y. (2001). The role of cellular polysaccharides in the formation and stability of aerobic granules. Letters in Applied Microbiology, 33(3), 222–226.

  54. Teng, X. Y., Yan, M. Q., & Bi, H. (2014). Spectra investigation on surface characteristics of graphene oxide nanosheets treated with tartaric, malic and oxalic acids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 1021–1024.

  55. Uhlmann, D., Röske, I., & Hupfer, M. (1990). A simple method to distinguish between polyphosphate and other phosphate fractions of activated sludge. Water Research, 24, 1355–1360.

  56. Vecitis, C. D., Zodrow, K. R., Kang, S., & Elimelech, M. (2010). Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. American Chemical Society Nano, 4(9), 5471–5479.

  57. Verawaty, M., Tait, S., Pijuan, M., Yuan, Z. G., & Bond, P. L. (2013). Breakage and growth towards a stable aerobic granule size during the treatment of wastewater. Water Research, 47(14), 5338–5349.

  58. Wang, X., Zhi, L. J., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323–327.

  59. Wang, D., Wang, G. W., Zhang, G. Q., Xu, X. C., & Yang, F. L. (2013). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresource Technology, 131, 527–530.

  60. Wang, R. D., Peng, Y. Z., Cheng, Z. L., & Ren, N. Q. (2014). Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system. Bioresource Technology, 169, 307–312.

  61. Wentzel, M. C., Ekama, G. A., Loewenthal, R. E., Dold, P. L., & Marais, G. R. (1989). Enhanced polyphosphate organism cultures in activated sludge systems. Part II: Experimental behaviour. Water SA, 15(2), 71–88.

  62. Whitton, B. A., Grainger, S. L. J., Hawley, G. R. W., & Simon, J. W. (1991). Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microbial Ecology, 21(1), 85–98.

  63. Williams, J. C., & de los Reyes, F. (2006). Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Science & Technology, 54(1), 139–146.

  64. Xu, Y., Wang, C., Hou, J., Wang, P. F., You, G. X., Miao, L. Z., Lv, B., & Yang, Y. Y. (2017). Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor. Bioresource Technology, 227, 393–397.

  65. Yang, S. F., Li, X. Y., & Yu, H. Q. (2008). Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochemistry, 43(1), 8–14.

  66. Zhang, L. L., Feng, X. X., Zhu, N. W., & Chen, J. M. (2007). Role of extracellular protein in the formation and stability of aerobic granules. Enzyme and Microbial Technology, 41(5), 551–557.

  67. Zhang, Z. C., Huang, X., Yang, H. J., Xiao, K., Luo, X., Sha, H., & Chen, Y. M. (2009). Study on P forms in extracellular polymeric substances in enhanced biological phosphorus removal sludge by 31P-NMR spectroscopy. Spectroscopy and Spectral Analysis, 29(2), 536–539.

  68. Zhang, H. L., Fang, W., Wang, Y. P., Sheng, G. P., Xia, C. W., Zeng, R. J., & Yu, H. Q. (2013a). Species of phosphorus in the extracellular polymeric substances of EBPR sludge. Bioresource Technology, 142, 714–718.

  69. Zhang, H. L., Fang, W., Wang, Y. P., Sheng, G. P., Zeng, R. J., Li, W. W., & Yu, H. Q. (2013b). Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environmental Science & Technology, 47(20), 11482–11489.

  70. Zhang, Q. G., Hu, J. J., & Lee, D. J. (2016). Aerobic granular processes: current research trends. Bioresource Technology, 210, 74–80.

  71. Zhu, L., Yu, Y. W., Dai, X., Xu, X. Y., & Qi, H. Y. (2013). Optimization of selective sludge discharge mode for enhancing the stability of aerobic granular sludge process. Chemical Engineering Journal, 217, 442–446.

  72. Zhu, L., Zhou, J. H., Lv, M., Yu, H. T., Zhao, H., & Xu, X. Y. (2015). Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE. Chemosphere, 121, 26–32.

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 21407114) and the Open Research Fund of Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education (No. 2014G1502032).

Author information

Correspondence to Xiaoying Liu.

Electronic supplementary material

ESM 1

(DOCX 1668 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, Y., Luo, Y. et al. Effect of Graphene Oxide on the Characteristics and Mechanisms of Phosphorus Removal in Aerobic Granular Sludge: Case Report. Water Air Soil Pollut 229, 8 (2018). https://doi.org/10.1007/s11270-017-3657-1

Download citation

Keywords

  • Aerobic granular sludge (AGS)
  • Graphene oxide (GO)
  • Phosphorus uptake and release
  • Phosphorus species
  • Extracellular polymeric substances (EPS)