Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of a Laboratory Method for the Comparison of Settling Processes of Road-Deposited Sediments with Artificial Test Material

  • 393 Accesses

Abstract

Sediments deposited on road surfaces are contaminated with pollutants; the load of pollution increases from coarse to fine particles. When it rains, different fractions of the road-deposited sediments are washed off depending on the rain intensity, the slope of the catchment, and other site-specific factors. This road runoff is often treated using settling processes implemented in different types of manufactured treatment devices. These devices can be tested with well-defined artificial test materials to determine the removal efficiencies of particulate matter in a reproducible manner. However, the suitability of the currently deployed artificial test materials to represent the settling behavior of real runoff particle collectives is largely unknown. In this study, a laboratory method to measure and compare the settling behavior of artificial and real particle collectives with a reproducible particle size composition was developed. The particle collectives were obtained from different road surfaces, fractionated into sieve classes, and then recomposed into a defined particle size distribution that represented the road runoff. The settling velocity was analyzed in a modified settling column setup under constant conditions. The resulting data form a cumulative curve of the settling velocities for both artificial and real particle collectives. The main result from this work is that the tested artificial material and the recomposed real particle collectives have comparable settling behaviors despite different losses on ignition and densities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adachi, K., & Tainosho, Y. (2005). Single particle characterization of size-fractionated road sediments. Applied Geochemistry, 20(5), 849–859. https://doi.org/10.1016/j.apgeochem.2005.01.005.

  2. Aryal, R. K., Furumai, H., Nakajima, F., & Boller, M. (2005). Dynamic behavior of fractional suspended solids and particle-bound polycyclic aromatic hydrocarbons in highway runoff. Water Research, 39(20), 5126–5134. https://doi.org/10.1016/j.watres.2005.09.045.

  3. Ball, J. E., Jenks, R., & Aubourg, D. (1998). An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment, 209, 243–254. https://doi.org/10.1016/S0048-9697(98)80115-0.

  4. Bris, F. J., Garnaud, S., Apperry, N., Gonzalez, A., Mouchel, J. M., Chebbo, G., & Thévenot, D. R. (1999). A street deposit sampling method for metal and hydrocarbon contamination assessment. Science of the Total Environment, 235(1–3), 211–220. https://doi.org/10.1016/S0048-9697(99)00192-8.

  5. British Water. (2017). Assessment of manufactured treatment devices designed to treat surface water runoff. code of practice. London: British Water Treatment Device Test Code of Practice workgroup.

  6. Brombach, H., Michelbach, S., & Wöhrle, C. (1992). Sedimentationsvorgänge und Remobilisierungsvorgänge im Abwasserkanal - Teilprojekt 3 - Schlussbericht 1988–1991 Phase 1: Niederschlagsbedingte Schmutzbelastung der Gewässer aus städtischen befestigten Flächen; Sedimentation processes and remobilization processes in the sewage system—subproject 3—final report 1988–1991 phase 1: precipitation-induced pollution of the water from urban areas. Bad Mergentheim.

  7. Charters, F. J., Cochrane, T. A., & O’Sullivan, A. (2015). Particle size distribution variance in untreated urban runoff and its implication on treatment selection. Water Research, 85, 337–345. https://doi.org/10.1016/j.watres.2015.08.029.

  8. Chebbo, G., & Gromaire, M. C. (2009). VICAS—an operating protocol to measure the distributions of suspended solids settling velocities within urban drainage systems. Journal of Environmental Engineering, 135, 768–775. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:9(768).

  9. Department of Ecology. (2011). Technical guidance manual for evaluating emerging stormwater treatment technologies, technology assessment protocol—ecology (TAPE) (No. Publication no. 11-10-061) (pp. 1–59).

  10. DIBt. (2015). Zulassungsgrundsätze für Niederschlagswasserbehandlungsanlagen. Teil 1: Anlagen zur dezentralen Behandlung des Abwassers von Kfz-Verkehrsflächen zur anschließenden Versickerung in Boden und Grundwasser; approval guidelines for stormwater treatment systems. Part 1: systems for the decentralized treatment of wastewater from vehicle traffic areas for subsequent discharge into soil and groundwater). Berlin: Deutsches Institut für Bautechnik.

  11. Dierkes, C., Welker, A., & Dierschke, M. (2013). Development of testing procedures for the certification of decentralized stormwater treatment facilities—results of laboratory tests. In proceedings of 8th International Novatech Conference, Lyon, France, 23–27 June 2013.

  12. Dierkes, C., Lucke, T., & Helmreich, B. (2015). General technical approvals for decentralised sustainable urban drainage systems (SUDS)—the current situation in Germany. Sustainability, 7(3), 3031–3051. https://doi.org/10.3390/su7033031.

  13. DIN 18123. (2011). Baugrund, Untersuchung von Bodenproben - Bestimmung der Korngrößenverteilung; soil, investigation and testing—determination of grain-size distribution. DIN Deutsches Institut für Normung e. V.

  14. DIN 38409-H2. (1987). Summarische Wirkungs- und Stoffkenngrößen (Gruppe H) - Bestimmung der abfiltrierbaren Stoffe und des Glührückstandes; German standard methods for examination of waste, waste water and sludge; general measures of effects and substances (group H); determination of the non filterable substances and the residue of ignition. DIN Deutsches Institut für Normung e. V.

  15. DIN 66137-2. (2004). Bestimmung der Dichte fester Stoffe - Teil 2: Gaspyknometrie; determination of solid state density—Part 2: Gaspycnometry. DIN Deutsches Institut für Normung e. V.

  16. Djukić, A., Lekić, B., Rajaković-Ognjanović, V., Veljović, D., Vulić, T., Djolić, M., et al. (2016). Further insight into the mechanism of heavy metals partitioning in stormwater runoff. Journal of Environmental Management, 168, 104–110. https://doi.org/10.1016/j.jenvman.2015.11.035.

  17. Egodawatta, P., & Goonetilleke, A. (2006). Characteristics of pollution build-up on residential road surfaces. In Proceedings of the 7th International Conference on HydroScience and Engineering Philadelphia, USA September 10–13, 2006 (ICHE 2006). Drexel University College of Engineering.

  18. Furumai, H., Balmer, H., & Boller, M. (2002). Dynamic behavior of suspended pollutants and particle size distribution in highway runoff. Water Science and Technology, 46(11–12), 413–418.

  19. Graaf, E. R. T., Baars, E. J., & Kluck, J. (2008). Settling curves of pollutants in storm water. 11th International Conference on Urban Drainage, Edinburgh, Scotland.

  20. Gunawardana, C., Egodawatta, P., & Goonetilleke, A. (2014). Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces. Environmental pollution (Barking, Essex : 1987), 184, 44–53. https://doi.org/10.1016/j.envpol.2013.08.010.

  21. Haile, T. M., Fürhacker, M. (2017). Filtermaterialprüfung: Anwendung der ÖNORM B 2506 Teil 3 für das hochrangige Straßennetz. Österreichische Wasser- und Abfallwirtschaft, 1–8. https://doi.org/10.1007/s00506-017-0427-7.

  22. Haile, T. M., Hobiger, G., Kammerer, G., Allabashi, R., Schaerfinger, B., & Fuerhacker, M. (2016). Hydraulic performance and pollutant concentration profile in a stormwater runoff filtration systems. Water, Air, & Soil Pollution, 227(1), 398. https://doi.org/10.1007/s11270-015-2736-4.

  23. Hong, Y., Bonhomme, C., Le, M.-H., & Chebbo, G. (2016). New insights into the urban washoff process with detailed physical modelling. Science of the Total Environment, 573, 924–936. https://doi.org/10.1016/j.scitotenv.2016.08.193.

  24. Huber, M., Welker, A., & Helmreich, B. (2016). Critical review of heavy metal pollution of traffic area runoff: occurrence, influencing factors, and partitioning. Science of the Total Environment, 541, 895–919. https://doi.org/10.1016/j.scitotenv.2015.09.033.

  25. Kayhanian, M., Stransky, C., Bay, S., Lau, S.-L., & Stenstrom, M. K. (2008). Toxicity of urban highway runoff with respect to storm duration. Science of the Total Environment, 389(2–3), 386–406. https://doi.org/10.1016/j.scitotenv.2007.08.052.

  26. Kayhanian, M., Fruchtman, B. D., Gulliver, J. S., Montanaro, C., Ranieri, E., & Wuertz, S. (2012a). Review of highway runoff characteristics: comparative analysis and universal implications. Water Research, 46(20), 6609–6624. https://doi.org/10.1016/j.watres.2012.07.026.

  27. Kayhanian, M., McKenzie, E. R., Leatherbarrow, J. E., & Young, T. M. (2012b). Characteristics of road sediment fractionated particles captured from paved surfaces, surface run-off and detention basins. Science of the Total Environment, 439, 172–186. https://doi.org/10.1016/j.scitotenv.2012.08.077.

  28. Kim, D. G., & Jeong, S. O. (2014). Removal of road-deposited sediments by sweeping and its contribution to highway runoff quality in Korea. Environmental Technology, 35(20), 2546–2555. https://doi.org/10.1080/09593330.2014.911777.

  29. Kim, J. Y., & Sansalone, J. (2008). Event-based size distribution of particulate matter transported during urban rainfall-runoff events. Water Research, 42, 2756–2768. https://doi.org/10.1016/j.watres.2008.02.005.

  30. Krein, A., & Schorer, M. (2000). Road runoff pollution by polycyclic aromatic hydrcarbons and its contribution to river sediments. Water Research, 36(16), 4110–4115. https://doi.org/10.1016/S0043-1354(00)00156-1.

  31. Krishnappan, B. G., Marsalek, J., Exall, K., Stephens, R. P., Rochfort, Q., & Seto, P. (2004). A water elutriation apparatus for measuring settling velocity distribution of suspended solids in combined sewer overflows. Water Quality Research Journal of Canada, 39(4), 432–438.

  32. Krishnappan, B. G., Exall, K., Marsalek, J., Rochfort, Q., Kydd, S., Baker, M., & Stephens, R. P. (2012). Variability of settling characteristics of solids in dry and wet weather flows in combined sewers. Water, Air, & Soil Pollution, 223(6), 3021–3032. https://doi.org/10.1007/s11270-012-1085-9.

  33. Lau, S. L., & Stenstrom, M. K. (2005). Metals and PAHs adsorbed to street particles. Water Research, 39, 4083–4092. https://doi.org/10.1016/j.watres.2005.08.002.

  34. Li, H., Shi, A., & Zhang, X. (2015). Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park. Journal of Environmental Sciences, 32, 228–237. https://doi.org/10.1016/j.jes.2014.11.014.

  35. Li, Y., Lau, S. L., Kayhanian, M., & Stenstrom, M. K. (2005). Particel size distribution in highway runoff. Journal of Environmental Engineering, 131(9), 1267–1276. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1267).

  36. Lin, H. (2003). Granulometry, chemistry and physical interactions of non-colloidal particulate matter transported by urban storm water (Dissertation). Louisiana State University and Agricultural and Mechanical College.

  37. Lucke, T., Nichols, P., Shaver, E., Lenhart, J., Welker, A., & Huber, M. (2017). Pathways for the evaluation of stormwater quality improvement devices—the experience of six countries. CLEAN - Soil, Air, Water. https://doi.org/10.1002/clen.201600596.

  38. Lyn, D. A., Stamou, A. I., & Rodi, W. (1992). Density currents and shear-induced flocculation in sedimentation tanks. Journal of Hydraulic Engineering, 118(6), 849–867. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:6(849).

  39. Maruejouls, T., Vanrolleghem, P. A., Pelletier, G., & Lessard, P. (2012). A phenomenological retention tank model using settling velocity distributions. Water Research, 46(20), 6857–6867. https://doi.org/10.1016/j.watres.2011.11.067.

  40. Maus, C., Holtrup, F., & Uhl, M. (2008). Measurement method for in situ particle settling velocity. 11th International Conference on Urban Drainage, Edinburgh, Scotland.

  41. Michelbach, S., & Wöhrle, C. (1993). Settleable solids in a combined sewer system, settling characteristics, heavy metals, efficiency of storm water tanks. Water Science and Technology, 27(5–6), 153–164.

  42. NJDEP. (2009). Protocol for total suspended solids removal based on field testing; in: amendments to TARP protocol.Trenton: Department of Environmental Protection, State of New Jersey.

  43. NJDEP. (2013). Procedure for obtaining verification of a stormwater manufactured treatment device from New Jersey Corporation for advanced technology. Trenton: Department of Environmental Protection, State of New Jersey.

  44. Opher, T., & Friedler, E. (2010). Factors affecting highway runoff quality. Urban Water Journal, 7(3), 155–172. https://doi.org/10.1080/15730621003782339.

  45. Pisano, W. C., & Brombach, H. (1996). Solids settling curves: wastewater solids data can aid design of urban runoff controls. Water Environment Technology, 8(4), 27–32.

  46. Quarzwerke GmbH. (2015). Stoffdaten MILLISIL®-Mehle Werk Weferlingen; Material Data MILLISIL®-flours plant, Weferlingen. http://www.quarzwerke.com/images/pdf/Datenblaetter/1238-MILLISIL-SMW-HPF-2.pdf. Accessed 5 Jan 2017.

  47. Retsch GmbH. (2015). Sieve analysis, taking a close look at quality—an expert guide to particle size analysis. http://www.retsch.com/dltmp/www/53e4b562-5294-4711-9111-636500000000-b8e580d34c65/expert_guide_sieving_en.pdf. Accessed 5 May 2017.

  48. Robertson, D. J., & Taylor, K. G. (2007). Temporal variability of metal contamination in urban road-deposited sediment in Manchester, UK. Water, Air, & Soil Pollution, 186(1–4), 209–220. https://doi.org/10.1007/s11270-007-9478-x.

  49. Sample, D. J., Grizzard, T. J., Sansalone, J., Davis, A. P., Roseen, R. M., & Walker, J. (2012). Assessing performance of manufactured treatment devices for the removal of phosphorus from urban stormwater. Journal of Environmental Management, 113, 279–291. https://doi.org/10.1016/j.jenvman.2012.08.039.

  50. Sansalone, J. J., & Kim, J.-Y. (2008). Transport of particulate matter fractions in urban source area pavement surface runoff. Journal of Environmental Quality, 37(5), 1883–1393. https://doi.org/10.2134/jeq2007.0495.

  51. Sartor, J. D., & Boyd, G. B. (1972). Water pollutant aspects of street surface contaminants (environmental protection technology series no. EPA-R2-72-081). Washington: U.S. Environmental Protection Agency (EPA).

  52. Selbig, W., & Bannerman, R. T. (2007). Evaluation of street sweeping as a stormwater-quality-management tool in three residential basins in Madison, Wisconsin. U.S. Geological Survey Scientific Investigations Report 2007–5156. Reston: U.S. Geological Survey.

  53. Selbig, W., Fienen, M., Horwatich, J., & Bannerman, R. (2016). The effect of particle size distribution on the design of urban stormwater control measures. Water, 8(1), 17. https://doi.org/10.3390/w8010017.

  54. Sutherland, R. A. (2003). Lead in grain size fractions of road-deposited sediment. Environmental Pollution, 121, 229–237. https://doi.org/10.1016/S0269-7491(02)00219-1.

  55. Torres, A., & Bertrand-Krajewski, J. L. (2008). Evaluation of uncertainties in settling velocities of particles in urban stormwater runoff. Water Science and Technology, 57(9), 1389–1396. https://doi.org/10.2166/wst.2008.307.

  56. Vaze, J., & Chiew, F. H. S. (2002). Experimental study of pollutant accumulation on an urban road surface. Urban Water, 4, 379–389. https://doi.org/10.1016/S1462-0758(02)00027-4.

  57. Walling, D. E., & Woodward, J. C. (1993). Use of field-based water elutriation system for monitoring the in situ particle size characteristics of fluvial suspended sediment. Water Research, 27(9), 1413–1421. https://doi.org/10.1016/0043-1354(93)90021-9.

  58. Wong, K. B., & Piedrahita, R. H. (2000). Settling velocity charcterization of aquacultural solids. Aquacultural Engineering, 21, 233–246. https://doi.org/10.1016/S0144-8609(99)00033-3.

  59. Wu, J., Ren, Y., Wang, X., Wang, X., Chen, L., & Liu, G. (2015). Nitrogen and phosphorus associating with different size suspended solids in roof and road runoff in Beijing, China. Environmental Science and Pollution Research, 22(20), 15788–15795. https://doi.org/10.1007/s11356-015-4743-9.

  60. Ying, G., & Sansalone, J. (2011). Gravitational settling velocity regimes for heterodisperse urban drainage particulate matter. Journal of Environmental Engineering, 137(1), 15–27. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000298.

  61. Yun, Y., Park, H., Kim, L., & Ko, S. (2010). Size distributions and settling velocities of suspended particles from road and highway. Journal of Civil Engineering, 14(4), 481–488. https://doi.org/10.1007/s12205-010-0481-1.

  62. Zanders, J. M. (2005). Road sediment: characterization and implications for the performance of vegetated strips for treating road run-off. Science of the Total Environment, 339(1–3), 41–47. https://doi.org/10.1016/j.scitotenv.2004.07.023.

  63. Zhao, H., & Li, X. (2013). Understanding the relationship between heavy metals in road-deposited sediments and washoff particles in urban stormwater using simulated rainfall. Journal of Hazardous Materials, 246–247, 267–276. https://doi.org/10.1016/j.jhazmat.2012.12.035.

Download references

Funding

This paper was partially funded by the doctoral scholarship program of the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU) for Laura Gelhardt.

Author information

Correspondence to Antje Welker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gelhardt, L., Huber, M. & Welker, A. Development of a Laboratory Method for the Comparison of Settling Processes of Road-Deposited Sediments with Artificial Test Material. Water Air Soil Pollut 228, 467 (2017). https://doi.org/10.1007/s11270-017-3650-8

Download citation

Keywords

  • Lab-scale column experiment
  • Particle size distribution
  • Settling velocity
  • Road-deposited sediments
  • Quartz sand