Water, Air, & Soil Pollution

, 228:464 | Cite as

Application of Zeolites for Sustainable Agriculture: a Review on Water and Nutrient Retention

  • Seyyed Ali Akbar Nakhli
  • Madjid DelkashEmail author
  • Babak Ebrazi Bakhshayesh
  • Hossein Kazemian


Developing urbanization, water shortage, watercourse pollution, and demands for more food due to population growth require a more efficient water irrigation and fertilizer application. Retaining nutrients and water in agricultural soils brings about higher crop yields and prevents pollution of water courses. Among different solutions, zeolites, which are environmental friendly, ubiquitous, and inexpensive, have been extensively employed in agricultural activities. These minerals are considered as soil conditioners to improve soil physical and chemical properties including infiltration rate, saturated hydraulic conductivity (K s), water holding capacity (WHC), and cation exchange capacity (CEC). Natural and surface-modified zeolites can efficiently hold water and nutrients including ammonium (NH4 +), nitrate (NO3 ) and phosphate (PO4 3−), potassium (K+), and sulfate (SO4 2−) in their unique porous structures. Their application as slow-release fertilizers (SRFs) are reported as well. Therefore, zeolite application can improve both water use efficiency (WUE) and nutrient use efficiency (NUE) in agricultural activities and consequently can reduce the potential of surface and groundwater pollution. This review paper summarizes findings in the literature about the impact of zeolite applications on water and nutrient retention in the agriculture. Furthermore, it explores benefits and drawbacks of zeolite applications in this regard.

Graphical Abstract


Zeolite Sustainable agriculture Water retention Nutrient leaching 



Benzene, toluene, ethyl benzene, and xylene


Breakthrough curve


Cation exchange capacity/external cation exchange capacity


Dioctadecyldimethylammonium/ dioctadecyldimethylammonium bromide


Electrical conductivity of irrigation water


Electrical conductivity


Hexadecyltrimethylammonium/ hexadecyltrimethylammonium bromide


Field saturated hydraulic conductivity


Saturated hydraulic conductivity


Maximum contaminant level


Nitrogen/nutrient use efficiency


Phosphate rock




Sodium adsorption ratio of irrigation water


Surfactant-modified zeolite


Slow-release fertilizer




Volatile organic compounds

v v−1

Volume fraction


Water holding capacity


World Health Organization


Water use efficiency

w w−1

Mass fraction


X-ray diffraction


Cumulative infiltration


Zeolite application rate


Mean soil particle diameter standard deviation

Chemical Symbols


































Nitrous oxide


















  1. Abbasi, M. K., Tahir, M. M., Sabir, N., & Khurshid, M. (2015). Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth, 6(1), 197.CrossRefGoogle Scholar
  2. Aghaalikhani, M., Gholamhoseini, M., Dolatabadian, A., Khodaei-Joghan, A., & Sadat Asilan, K. (2012). Zeolite influences on nitrate leaching, nitrogen-use efficiency, yield and yield components of canola in sandy soil. Archives of Agronomy and Soil Science, 58(10), 1149–1169.CrossRefGoogle Scholar
  3. Ahmed, O. H., Braine Yap, C., & Nik Muhamad, A. (2010). Minimizing ammonia loss from urea through mixing with zeolite and acid sulphate soil. International Journal of the Physical Sciences, 5(14), 2198–2202.Google Scholar
  4. Aiyuk, S., Xu, H., & Van Haandel, A. (2004). Removal of ammonium nitrogen from pretreated domestic sewage using a natural ion exchanger. Environmental Technology, 25(11), 1321–1330.CrossRefGoogle Scholar
  5. Akhtar, M., Hassan, F., Ahmed, M., Hayat, R., & Stöckle, C. O. (2016). Is rainwater harvesting an option for designing sustainable cropping patterns for rainfed agriculture? Land Degradation & Development, 27(3), 630–640.CrossRefGoogle Scholar
  6. Al-Busaidi, A., Yamamoto, T., Inoue, M., Eneji, A. E., Mori, Y., & Irshad, M. (2008). Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. Journal of Plant Nutrition, 31(7), 1159–1173.CrossRefGoogle Scholar
  7. Allen, E., & Ming, D. (1995). Recent progress in the use of natural zeolites in agronomy and horticulture. Natural Zeolites, 93, 477–490.Google Scholar
  8. Allen, E., Hossner, L., Ming, D., & Henninger, D. (1993). Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Science Society of America Journal, 57(5), 1368–1374.CrossRefGoogle Scholar
  9. Anderson, S. H., Udawatta, R. P., Seobi, T., & Garrett, H. E. (2009). Soil water content and infiltration in agroforestry buffer strips. Agroforestry Systems, 75(1), 5–16.CrossRefGoogle Scholar
  10. Aschebrook-Kilfoy, B., Shu, X., Gao, Y., Ji, B., Yang, G., Li, H. L., Rothman, N., Chow, W., Zheng, W., & Ward, M. H. (2013). Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women’s health study. International Journal of Cancer, 132(4), 897–904.CrossRefGoogle Scholar
  11. Asilian, H., Mortazavi, S., Kazemian, H., Phaghiehzadeh, S., Shahtaheri, S., & Salem, M. (2004). Removal of ammonia from air, using three Iranian natural zeolites. Iranian Journal of Public Health, 33(1), 45–51.Google Scholar
  12. Azooz, R., & Arshad, M. (1996). Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems. Canadian Journal of Soil Science, 76(2), 143–152.CrossRefGoogle Scholar
  13. Baek, K., Shin, H., Lee, H., Jun, Y., & Yang, J. (2002). Statistical modeling of electrochemical removal of sodium in fermented food composts. Korean Journal of Chemical Engineering, 19(4), 627–631.CrossRefGoogle Scholar
  14. Baerlocher, C., McCusker, L. B., & Olson, D. H. (2007). Atlas of zeolite framework types. Elsevier.Google Scholar
  15. Bagarello, V., Iovino, M., Palazzolo, E., Panno, M., & Reynolds, W. (2006). Field and laboratory approaches for determining sodicity effects on saturated soil hydraulic conductivity. Geoderma, 130(1), 1–13.CrossRefGoogle Scholar
  16. Bakhshayesh, B. E., Delkash, M., & Scholz, M. (2014). Response of vegetables to cadmium-enriched soil. Water, 6(5), 1246–1256.CrossRefGoogle Scholar
  17. Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., & Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Journal of Agricultural and Food Chemistry, 54(13), 4773–4779.CrossRefGoogle Scholar
  18. Barrer, R., & Klinowski, J. (1972). Influence of framework charge density on ion-exchange properties of zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 68, 1956–1963.CrossRefGoogle Scholar
  19. Barrer, R., Davies, J., & Rees, L. (1968). Thermodynamics and thermochemistry of cation exchange in zeolite Y. Journal of Inorganic and Nuclear Chemistry, 30(12), 3333–3349.CrossRefGoogle Scholar
  20. Barros, M., Zola, A., Arroyo, P., Sousa-Aguiar, E., & Tavares, C. (2003). Binary ion exchange of metal ions in Y and X zeolites. Brazilian Journal of Chemical Engineering, 20(4), 413–421.CrossRefGoogle Scholar
  21. Bautista, J. M., Kim, H., Ahn, D., Zhang, R., & Oh, Y. (2011). Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. Korean Journal of Chemical Engineering, 28(1), 189–194.CrossRefGoogle Scholar
  22. Behin, J., & Sadeghi, N. (2016). Utilization of waste lignin to prepare controlled-slow release urea. International Journal of Recycling of Organic Waste in Agriculture, 5(4), 289–299.CrossRefGoogle Scholar
  23. Bernardi, A. C., Oliviera, P. P. A., De Melo Monte, M. B., & Souza-Barros, F. (2013). Brazilian sedimentary zeolite use in agriculture. Microporous and Mesoporous Materials, 167, 16–21.CrossRefGoogle Scholar
  24. Bernardi, A. D. C., Mendonça, F., Haim, P., Werneck, C., & Monte, M. D. M. (2009). Water availability and rice yield due to levels of zeolitic concentrate. Irriga, 14(2), 123–134.Google Scholar
  25. Bhardwaj, D., Sharma, M., Sharma, P., & Tomar, R. (2012). Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. Journal of Hazardous Materials, 227, 292–300.CrossRefGoogle Scholar
  26. Bigelow, C. A., Bowman, D. C., Cassel, D. K., & Rufty, T. W. (2001). Creeping bentgrass response to inorganic soil amendments and mechanically induced subsurface drainage and aeration. Crop Science, 41(3), 797–805.CrossRefGoogle Scholar
  27. Bittelli, M., Campbell, G. S., & Tomei, F. (2015). Soil physics with Python: transport in the soil-plant-atmosphere system. OUP Oxford.Google Scholar
  28. Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61(1), 43–56.CrossRefGoogle Scholar
  29. Bugbee, G., & Elliott, G. (1998). Leaching of nitrogen and phosphorus from potting media containing biosolids compost as affected by organic and clay amendments. Bulletin of Environmental Contamination and Toxicology, 60(5), 716–723.CrossRefGoogle Scholar
  30. Cahn, M., Bouldin, D., & Cravo, M. (1992). Nitrate sorption in the profile of an acid soil. Plant and Soil, 143(2), 179–183.CrossRefGoogle Scholar
  31. Chelishehev, N., Volodin, N., & Kryukov, V. (1988). Ion exchange properties of natural high silica zeolitesGoogle Scholar
  32. Chesworth, W., Van Straaten, P., Smith, P., & Sadura, S. (1987). Solubility of apatite in clay and zeolite bearing systems: application to agriculture. Applied Clay Science, 2(3), 291–297.CrossRefGoogle Scholar
  33. Chmielewska, E. (2014a). Designing clinoptiloliterich tuff columns for adsorptive filtration of water with enhanced ammonium concentration. Fresenius Environmental Bulletin, 23(5).Google Scholar
  34. Chmielewska, E. (2014b). Zeolitic adsorption in course of pollutants mitigation and environmental control. Journal of Radioanalytical and Nuclear Chemistry, 299(1), 255–260.CrossRefGoogle Scholar
  35. Chmielewska, E., & Lesný, J. (2012). Selective ion exchange onto Slovakian natural zeolites in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 293(2), 535–543.CrossRefGoogle Scholar
  36. Coblentz, W., Daniels, M., Gunsaulis, J., Turner, J., Scarbrough, D., Humphry, J., Coffey, K., Moore, P., Teague, K., & Speight, J. (2004). Effects of nitrogen fertilization on phosphorus uptake in bermudagrass forage grown on high soil-test phosphorus sites. The Professional Animal Scientists, 20(2), 146–154.CrossRefGoogle Scholar
  37. Cobzaru, C., & Inglezakis, V. (2012). Mathematical modeling of sorption process of Cu 2 ions on analcime and clinoptilolite. Environmental Engineering and Management Journal, 11(11).Google Scholar
  38. Colella, C. (1996). Ion exchange equilibria in zeolite minerals. Mineralium Deposita, 31(6), 554–562.CrossRefGoogle Scholar
  39. Colombani, N., Mastrocicco, M., Di Giuseppe, D., Faccini, B., & Coltorti, M. (2015). Batch and column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena, 127, 64–71.CrossRefGoogle Scholar
  40. Cordoves, A. P., Valdés, M. G., Fernández, J. T., Luis, G. P., García-Calzón, J., & García, M. D. (2008). Characterization of the binding site affinity distribution of a surfactant-modified clinoptilolite. Microporous and Mesoporous Materials, 109(1), 38–48.CrossRefGoogle Scholar
  41. Delkash, M., Bakhshayesh, B. E., & Kazemian, H. (2015). Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224–241.CrossRefGoogle Scholar
  42. Delkash, M., Al-Faraj, F. A., & Scholz, M. (2014). Comparing the export coefficient approach with the soil and water assessment tool to predict phosphorous pollution: the Kan watershed case study. Water, Air, & Soil Pollution, 225(10), 1–17.CrossRefGoogle Scholar
  43. Demir, A., Gunay, A., & Debik, E. (2002). Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite. Water SA, 28(3), 329–336.CrossRefGoogle Scholar
  44. Dolley, T. (2014). US Geological Survey Mineral Commodity Summaries 2014. US Geological Survey, 138–139.Google Scholar
  45. Doublet, J., Francou, C., Poitrenaud, M., & Houot, S. (2010). Sewage sludge composting: Influence of initial mixtures on organic matter evolution and N availability in the final composts. Waste Management, 30(10), 1922–1930.CrossRefGoogle Scholar
  46. Dwairi, I. (1998). Renewable, controlled and environmentally safe phosphorus release in soils from mixtures of NH4 -phillipsite tuff and phosphate rocks. Environmental Geology, 34(4), 293–296.CrossRefGoogle Scholar
  47. Ebrazi, B., & Banihabib, M. E. (2015). Simulation of Ca2 and Mg2 removal process in fixed-bed column of natural zeolite. Desalination and Water Treatment, 55(4), 1116–1124.CrossRefGoogle Scholar
  48. Eick, M. J., Brady, W. D., & Lynch, C. K. (1999). Charge properties and nitrate adsorption of some acid southeastern soils. Journal of Environmental Quality, 28(1), 138–144.CrossRefGoogle Scholar
  49. El Kenawy, A., McCabe, M. F., Vicente-Serrano, S., López-Moreno, J., & Robaa, S. (2016). Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013. Cuadernos de Investigación Geográfica, 42(1), 145–166.CrossRefGoogle Scholar
  50. Elliot, A. D., & Zhang, D. (2005). Controlled release zeolite fertilisers: a value added product produced from fly ash.Google Scholar
  51. Enamorado-Horrutiner, Y., Villanueva-Tagle, M., Behar, M., Rodríguez-Fuentes, G., Dias, J. F., & Pomares-Alfonso, M. (2016). Cuban zeolite for lead sorption: application for water decontamination and metal quantification in water using nondestructive techniques. International journal of Environmental Science and Technology, 13(5), 1245–1256.CrossRefGoogle Scholar
  52. Englert, A., & Rubio, J. (2005). Characterization and environmental application of a Chilean natural zeolite. International Journal of Mineral Processing, 75(1), 21–29.CrossRefGoogle Scholar
  53. Faghihian, H., Kazemian, H., & Maragheh, M. (1999a). Iranian clinoptilolite-rich tuffs for radionuclide removal from water. Journal of Radioanalytical and Nuclear Chemistry, 242(2), 491–495.CrossRefGoogle Scholar
  54. Faghihian, H., Marageh, M. G., & Kazemian, H. (1999b). The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb 2 , Ni 2 , Cd 2 , Ba 2 from municipal wastewater. Applied Radiation and Isotopes, 50(4), 655–660.CrossRefGoogle Scholar
  55. Feigin, A., Ravina, I., & Shalhevet, J. (2012). Irrigation with treated sewage effluent: management for environmental protection. Springer Science & Business Media.Google Scholar
  56. Filippidis, A. (2010). Environmental, industrial and agricultural applications of Hellenic natural zeolite. Hellenic Journal of Geosciences, 45(20109), 91.Google Scholar
  57. Franzluebbers, A. (2002). Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Research, 66(2), 197–205.CrossRefGoogle Scholar
  58. Frenkel, H., Goertzen, J., & Rhoades, J. (1978). Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Science Society of America Journal, 42(1), 32–39.CrossRefGoogle Scholar
  59. Ghadiri, S., Nabizadeh, R., Mahvi, A., Nasseri, S., Kazemian, H., Mesdaghinia, A., & Nazmara, S. (2010). Methyl tert-butyl ether adsorption on surfactant modified natural zeolites. Iranian Journal of Environmental Health Science & Engineering, 7(3), 241.Google Scholar
  60. Ghasemi, Z., Sourinejad, I., Kazemian, H., & Rohani, S. (2016). Application of zeolites in aquaculture industry: a review. Reviews in Aquaculture.Google Scholar
  61. Gholamhoseini, M., Ghalavand, A., Khodaei-Joghan, A., Dolatabadian, A., Zakikhani, H., & Farmanbar, E. (2013). Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil and Tillage Research, 126, 193–202.CrossRefGoogle Scholar
  62. Gholamhoseini, M., AghaAlikhani, M., Dolatabadian, A., Khodaei-Joghan, A., & Zakikhani, H. (2012). Decreasing nitrogen leaching and increasing canola forage yield in a sandy soil by application of natural zeolite. Agronomy Journal, 104(5), 1467–1475.CrossRefGoogle Scholar
  63. Gholizadeh-Sarabi, S., & Sepaskhah, A. R. (2013). Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures. Archives of Agronomy and Soil Science, 59(5), 753–764.CrossRefGoogle Scholar
  64. Githinji, L. J., Dane, J. H., & Walker, R. H. (2011). Physical and hydraulic properties of inorganic amendments and modeling their effects on water movement in sand-based root zones. Irrigation Science, 29(1), 65–77.CrossRefGoogle Scholar
  65. Gonzales, R., & Fuentes, R. (1988). Cuban experience with the use of natural zeolite subsrates in soilless culture, 13–21.Google Scholar
  66. Greer, F. R., & Shannon, M. (2005). Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics, 116(3), 784–786.CrossRefGoogle Scholar
  67. Gruener, J. E., Ming, D. W., Henderson, K. E., & Galindo, C. (2003). Common ion effects in zeoponic substrates: wheat plant growth experiment. Microporous and Mesoporous Materials, 61(1), 223–230.CrossRefGoogle Scholar
  68. Gu, B., Ge, Y., Chang, S. X., Luo, W., & Chang, J. (2013). Nitrate in groundwater of China: sources and driving forces. Global Environmental Change, 23(5), 1112–1121.CrossRefGoogle Scholar
  69. Gül, A., Eroğul, D., & Ongun, A. R. (2005). Comparison of the use of zeolite and perlite as substrate for crisp-head lettuce. Scientia Horticulturae, 106(4), 464–471.CrossRefGoogle Scholar
  70. Guo, M., Liu, M., Liang, R., & Niu, A. (2006). Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation. Journal of Applied Polymer Science, 99(6), 3230–3235.CrossRefGoogle Scholar
  71. Haruna Ahmed, O., Husin, A., & Husni Mohd Hanif, A. (2008). Ammonia volatilization and ammonium accumulation from urea mixed with zeolite and triple superphosphate. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 58(2), 182–186.Google Scholar
  72. Hawkesford, M. J., & De Kok, L. J. (2006). Managing sulphur metabolism in plants. Plant, Cell & Environment, 29(3), 382–395.CrossRefGoogle Scholar
  73. He, Z., Calvert, D., Alva, A., Li, Y., & Banks, D. (2002). Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant and Soil, 247(2), 253–260.CrossRefGoogle Scholar
  74. Heckrath, G., Brookes, P., Poulton, P., & Goulding, K. (1995). Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. Journal of Environmental Quality, 24(5), 904–910.CrossRefGoogle Scholar
  75. Hershey, D., Paul, J., & Carlson, R. (1980). Evaluation of potassium-enriched clinoptilolite as a potassium source for potting media [Chrysanthemum morifolium]. HortScience (USA).Google Scholar
  76. Hong, J., & Park, K. (2005). Compost biofiltration of ammonia gas from bin composting. Bioresource Technology, 96(6), 741–745.CrossRefGoogle Scholar
  77. Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I., & Shimada, J. (2013). The use of δ 15 N and δ 18 O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Research, 47(8), 2661–2675.CrossRefGoogle Scholar
  78. Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1), 247–252.CrossRefGoogle Scholar
  79. Huang, Z., & Petrovic, A. (1994). Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens. Journal of Environmental Quality, 23(6), 1190–1194.CrossRefGoogle Scholar
  80. Ibrahim-Saeedi, F., & Sepaskhah, A. R. (2013). Effects of a bentonite–water mixture on soil-saturated hydraulic conductivity. Archives of Agronomy and Soil Science, 59(3), 377–392.CrossRefGoogle Scholar
  81. Inglezakis, V., Stylianou, M., Loizidou, M., & Zorpas, A. (2015). Experimental studies and modeling of clinoptilolite and vermiculite fixed beds for Mn2 , Zn2 , and Cr3 removal. Desalination and Water Treatment, 1–13.Google Scholar
  82. Inglezakis, V., Elaiopoulos, K., Aggelatou, V., & Zorpas, A. A. (2012). Treatment of underground water in open flow and closed-loop fixed bed systems by utilizing the natural minerals clinoptilolite and vermiculite. Desalination and Water Treatment, 39(1–3), 215–227.CrossRefGoogle Scholar
  83. Inglezakis, V. J. (2005). The concept of “capacity” in zeolite ion-exchange systems. Journal of Colloid and Interface Science, 281(1), 68–79.CrossRefGoogle Scholar
  84. Inglezakis, V. J., & Grigoropoulou, H. P. (2003). Modeling of ion exchange of Pb 2 in fixed beds of clinoptilolite. Microporous and Mesoporous Materials, 61(1), 273–282.CrossRefGoogle Scholar
  85. Ippolito, J. A., Tarkalson, D. D., & Lehrsch, G. A. (2011). Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Science, 176(3), 136–142.CrossRefGoogle Scholar
  86. Jabro, J. (1992). Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Transactions of ASAE, 35(2), 557–560.CrossRefGoogle Scholar
  87. Jalali, M., & Kolahchi, Z. (2009). Effect of irrigation water quality on the leaching and desorption of phosphorous from soil. Soil and Sediment Contamination, 18(5), 576–589.CrossRefGoogle Scholar
  88. Jalali, M. (2009). Phosphorous concentration, solubility and species in the groundwater in a semi-arid basin, southern Malayer, western Iran. Environmental Geology, 57(5), 1011–1020.CrossRefGoogle Scholar
  89. Jewell, S., & Kimball, S. (2016). US Geological Survey 2016: Mineral Commodity Summaries. US Govt. Printing Office: Reston.Google Scholar
  90. Jha, B., & Singh, D. N. (2016). Fly ash zeolites: innovations, applications, and directions. Springer.Google Scholar
  91. Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH 4+ retention capacity. Journal of Hazardous Materials, 169(1), 29–35.CrossRefGoogle Scholar
  92. Jiang, J., Huang, Y., Liu, X., & Huang, H. (2014). The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting. Waste Management, 34(9), 1595–1602.CrossRefGoogle Scholar
  93. Jlassi, W., Nadal-Romero, E., & García-Ruiz, J. (2016). Modernization of new irrigated lands in a scenario of increasing water scarcity: from large reservoirs to small ponds.Google Scholar
  94. Kazemian, H., Gedik, K., & Imamoglu, I. (2012). Environmental applications of natural zeolites. Handbook of natural zeolites, 473.Google Scholar
  95. Kazemian, H., & Mallah, M. (2008). Removal of chromate ion from contaminated synthetic water using MCM-41/ZSM-5 composite. Journal of Environmental Health Science & Engineering, 5(1), 73–77.Google Scholar
  96. Kazemian, H., & Mallah, M. H. (2006). Elimination of Cd2 and Mn2 from wastewaters using natural clinoptilolite and synthetic zeolite P. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 25(4), 91–94.Google Scholar
  97. Kazemian, H. (2002). Zeolite science in Iran: a brief review.Google Scholar
  98. Kazemian, H., Rajec, P., Macasek, F., & Kufacakoa, J. (2001). Investigation of lead removal from wastewater by Iranian natural zeolites using 212Pb as a radiotracer. Studies in Surface Science and Catalysis, 135, 6–31.Google Scholar
  99. Khatri, K. L., & Smith, R. (2006). Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrigation Science, 25(1), 33–43.CrossRefGoogle Scholar
  100. Klučáková, M. (2010). Adsorption of nitrate on humic acids studied by flow-through coulometry. Environmental Chemistry Letters, 8(2), 145–148.CrossRefGoogle Scholar
  101. Kuroda, K., Hanajima, D., Fukumoto, Y., Suzuki, K., Kawamoto, S., Shima, J., & Haga, K. (2004). Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Bioscience, Biotechnology, and Biochemistry, 68(2), 286–292.CrossRefGoogle Scholar
  102. Lai, T., & Eberl, D. D. (1986). Controlled and renewable release of phosphorous in soils from mixtures of phosphate rock and NH4-exchanged clinoptilolite. Zeolites, 6(2), 129–132.CrossRefGoogle Scholar
  103. Lal, R., & Shukla, M. K. (2004). Principles of soil physics. CRC Press.Google Scholar
  104. Lancellotti, I., Toschi, T., Passaglia, E., & Barbieri, L. (2014). Release of agronomical nutrient from zeolitite substrate containing phosphatic waste. Environmental Science and Pollution Research, 21(23), 13237–13242.CrossRefGoogle Scholar
  105. Leggo, P. J. (2015). The efficacy of the organo-zeolitic bio-fertilizer. Agrotechnology, 2015.Google Scholar
  106. Leij, F. J., & van Genuchten, M. T. (2001). 6 Solute Transport. Soil physics companion, 189.Google Scholar
  107. Levy, G., Goldstein, D., & Mamedov, A. (2005). Saturated hydraulic conductivity of semiarid soils: combined effects of salinity, sodicity, and rate of wetting. Soil Science Society of America Journal, 69(3), 653–662.CrossRefGoogle Scholar
  108. Li, C., Farahbakhshazad, N., Jaynes, D. B., Dinnes, D. L., Salas, W., & McLaughlin, D. (2006). Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecological Modelling, 196(1), 116–130.CrossRefGoogle Scholar
  109. Li, H., Xin, H., Liang, Y., & Burns, R. (2008). Reduction of ammonia emissions from stored laying hen manure through topical application of zeolite, Al Clear, Ferix-3, or poultry litter treatment. The Journal of Applied Poultry Research, 17(4), 421–431.CrossRefGoogle Scholar
  110. Li, X., Hu, C., Delgado, J. A., Zhang, Y., & Ouyang, Z. (2007). Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agricultural Water Management, 89(1), 137–147.CrossRefGoogle Scholar
  111. Li, Z., & Zhang, Y. (2010). Use of surfactant-modified zeolite to carry and slowly release sulfate. Desalination and Water Treatment, 21(1–3), 73–78.CrossRefGoogle Scholar
  112. Li, Z. (2003). Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous and Mesoporous Materials, 61(1), 181–188.CrossRefGoogle Scholar
  113. Lim, S., Lee, D., Kwak, J., Park, H., Kim, H., & Choi, W. (2015). Fly ash and zeolite amendments increase soil nutrient retention but decrease paddy rice growth in a low fertility soil. Journal of Soils and Sediments, 1–11.Google Scholar
  114. Lin, C., Lo, S., Lin, H., & Lee, Y. (1998). Stabilization of cadmium contaminated soils using synthesized zeolite. Journal of Hazardous Materials, 60(3), 217–226.CrossRefGoogle Scholar
  115. Mackinnon, I., Barr, K., Miller, E., Hunter, S., & Pinel, T. (2003). Nutrient removal from wastewaters using high performance materials, 47(11), 101–107.Google Scholar
  116. MacKown, C., & Tucker, T. (1985). Ammonium nitrogen movement in a coarse-textured soil amended with zeolite. Soil Science Society of America Journal, 49(1), 235–238.CrossRefGoogle Scholar
  117. MacKown, C. T. (1978). Role of mineral zeolites as soil amendments.Google Scholar
  118. Mahabadi, A. A., Hajabbasi, M., Khademi, H., & Kazemian, H. (2007). Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3), 388–393.CrossRefGoogle Scholar
  119. Malekian, R., Abedi-Koupai, J., & Eslamian, S. S. (2011a). Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials, 185(2), 970–976.CrossRefGoogle Scholar
  120. Malekian, R., Abedi-Koupai, J., Eslamian, S. S., Mousavi, S. F., Abbaspour, K. C., & Afyuni, M. (2011b). Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Applied Clay Science, 51(3), 323–329.CrossRefGoogle Scholar
  121. Mamedov, A. I., Bar-Yosef, B., Levkovich, I., Rosenberg, R., Silber, A., Fine, P., & Levy, G. J. (2016). Amending soil with sludge, manure, humic acid, orthophosphate and phytic acid: effects on infiltration, runoff and sediment loss. Land Degradation & Development, 27(6), 1629–1639.CrossRefGoogle Scholar
  122. McGilloway, R., Weaver, R., Ming, D., & Gruener, J. (2003). Nitrification in a zeoponic substrate. Plant and Soil, 256(2), 371–378.CrossRefGoogle Scholar
  123. McNeal, B., & Coleman, N. (1966). Effect of solution composition on soil hydraulic conductivity. Soil Science Society of America Journal, 30(3), 308–312.CrossRefGoogle Scholar
  124. Meisinger, J., & Jokela, W. (2000). Ammonia volatilization from dairy and poultry manure. Managing nutrients and pathogens from animal agriculture. NRAES-130. Natural Resource, Agriculture, and Engineering Service, Ithaca, NY, 334–354.Google Scholar
  125. Menhaje-Bena, R., Kazemian, H., Shahtaheri, S., Ghazi-Khansari, M., & Hosseini, M. (2004). Evaluation of iron modified zeolites for removal of arsenic from drinking water. Studies in Surface Science and Catalysis, 154, 1892–1899.CrossRefGoogle Scholar
  126. Miller, G. L. (2000). Physiological response of Bermuda grass grown in soil amendments during drought stress. Hortscience, 35(2), 213–216.Google Scholar
  127. Ming, D. W., & Allen, E. R. (2001). Use of natural zeolites in agronomy, horticulture and environmental soil remediation. Reviews in Mineralogy and Geochemistry, 45(1), 619–654.CrossRefGoogle Scholar
  128. Ming, D. W., & Mumpton, F. A. (1989). Zeolites in soils. Minerals in soil environments (mineralsinsoile), 873–911.Google Scholar
  129. Mnkeni, P., Semoka, J., & Kaitaba, E. (1994). Effects of Mapogoro phillipsite on availability of phosphorus in phosphate rocks. Tropical Agriculture, 71(4), 249–253.Google Scholar
  130. Moharami, S., & Jalali, M. (2014). Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents. Environmental Monitoring and Assessment, 186(10), 6565–6576.CrossRefGoogle Scholar
  131. Molla, A., Ioannou, Z., Dimirkou, A., & Skordas, K. (2014). Surfactant modified zeolites with iron oxide for the removal of ammonium and nitrate ions from waters and soils. Topics in Chemistry and Materials Science, Innoslab Ltd, 7, 38–49.Google Scholar
  132. Moosavi, A. A., & Sepaskhah, A. R. (2012). Determination of unsaturated soil hydraulic properties at different applied tensions and water qualities. Archives of Agronomy and Soil Science, 58(1), 11–38.CrossRefGoogle Scholar
  133. Moraetis, D., Papagiannidou, S., Pratikakis, A., Pentari, D., & Komnitsas, K. (2015). Effect of zeolite application on potassium release in sandy soils amended with municipal compost. Desalination and Water Treatment, 1–12.Google Scholar
  134. Mumpton, F. A. (1999). La roca magica: uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3463–3470.CrossRefGoogle Scholar
  135. Mumpton, F. A. (1985). Using zeolites in agriculture.Google Scholar
  136. Mumpton, F. A. (1980). Zeolites and mesothelioma. American Scientist, 68(3), 244–244.Google Scholar
  137. Mumpton, F. (1972). Clinoptilolite redefined, Ameralogist Mineralogist, 45 (1960) 351-369.[137] JR Boles, Composition, optical properties, cell dimensions, and thermal stability of some heulandites group zeolites. American Mineralogist, 57, 1463–1493.Google Scholar
  138. Nagaraja, M. S., Reddy, G. P., & Srinivasamurthy, C. A. (2016). Estimations of soil fertility in physically degraded agricultural soils through selective accounting of fine earth and gravel fractions. Solid Earth, 7(3), 897.CrossRefGoogle Scholar
  139. Nakhli, S. A., Ahmadizadeh, K., Fereshtehnejad, M., Rostami, M. H., Safari, M., & Borghei, S. M. (2014). Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia. SpringerPlus, 3, 112–1801–3-112. eCollection 2014.Google Scholar
  140. Ni, B., Liu, M., Lü, S., Xie, L., & Wang, Y. (2010a). Multifunctional slow-release organic–inorganic compound fertilizer. Journal of Agricultural and Food Chemistry, 58(23), 12373–12378.CrossRefGoogle Scholar
  141. Ni, B., Liu, M., Lü, S., Xie, L., Zhang, X., & Wang, Y. (2010b). Novel slow-release multielement compound fertilizer with hydroscopicity and moisture preservation. Industrial & Engineering Chemistry Research, 49(10), 4546–4552.CrossRefGoogle Scholar
  142. Nus, J., & Brauen, S. (1991). Clinoptilolitic zeolite as an amendment for establishment of creeping bentgrass on sandy media. Hortscience, 26(2), 117–119.Google Scholar
  143. Nyssen, J., Frankl, A., Zenebe, A., Poesen, J., & Deckers, J. (2015). Environmental conservation for food production and sustainable livelihood in tropical Africa. Land Degradation and Development, 26(7), 629–631.CrossRefGoogle Scholar
  144. Ober, J. A. (2017). Mineral commodity summaries 2017.Google Scholar
  145. Omar, O. L., Ahmed, O. H., & Muhamad, A. N. (2010). Minimizing ammonia volatilization in waterlogged soils through mixing of urea with zeolite and sago waste water. International Journal of Physical Sciences, 5(14), 2193–2197.Google Scholar
  146. Pal, D., Bhattacharyya, T., Ray, S., Chandran, P., Srivastava, P., Durge, S., & Bhuse, S. (2006). Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils. Geoderma, 136(1), 210–228.CrossRefGoogle Scholar
  147. Peña-Haro, S., Llopis-Albert, C., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2010). Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. Journal of Hydrology, 392(3), 174–187.CrossRefGoogle Scholar
  148. Pepper, I., Ferguson, G., & Kneebone, W. (1982). Clinoptilolite zeolite: a new medium for turfgrass growth. Proceedings of ASA: Agronomy Abstracts, 145.Google Scholar
  149. Perrin, T. S., Drost, D. T., Boettinger, J. L., & Norton, J. M. (1998a). Ammonium-loaded clinoptilolite: a slow-release nitrogen fertilizer for sweet corn. Journal of Plant Nutrition, 21(3), 515–530.CrossRefGoogle Scholar
  150. Perrin, T., Boettinger, J., Drost, D., & Norton, J. M. (1998b). Decreasing nitrogen leaching from sandy soil with ammonium-loaded clinoptilolite. Journal of Environmental Quality, 27(3), 656–663.CrossRefGoogle Scholar
  151. Phillips, I. (1998). Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability. Journal of Soil Contamination, 7(2), 191–212.CrossRefGoogle Scholar
  152. Pickering, H. W., Menzies, N. W., & Hunter, M. N. (2002). Zeolite/rock phosphate—a novel slow release phosphorus fertiliser for potted plant production. Scientia Horticulturae, 94(3), 333–343.CrossRefGoogle Scholar
  153. Piñón-Villarreal, A. R., Bawazir, A. S., Shukla, M. K., & Hanson, A. T. (2013). Retention and transport of nitrate and ammonium in loamy sand amended with clinoptilolite zeolite. Journal of Irrigation and Drainage Engineering, 139(9), 755–765.CrossRefGoogle Scholar
  154. Polat, E., Karaca, M., Demir, H., & Naci-Onus, A. (2004). Use of natural zeolite (clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research, 12(1), 183–189.Google Scholar
  155. Qian, J. H., Doran, J. W., Weier, K. L., Mosier, A. R., Peterson, T. A., & Power, J. F. (1997). Soil denitrification and nitrous oxide losses under corn irrigated with high-nitrate groundwater. Journal of Environmental Quality, 26(2), 348–360.CrossRefGoogle Scholar
  156. Rabai, K. A., Ahmed, O. H., & Kasim, S. (2013). Use of formulated nitrogen, phosphorus, and potassium compound fertilizer using clinoptilolite zeolite in maize (Zea mays L.) cultivation. Emirates Journal of Food and Agriculture, 25(9), 713.CrossRefGoogle Scholar
  157. Ramesh, K., Reddy, K. S., Rashmi, I., Biswas, A., & Islam, K. (2015a). Does particle size of clinoptilolite zeolite have a role in textural properties? Insight through differential pore-volume distribution of Barret, Joyner, and Halenda Model. Communications in Soil Science and Plant Analysis, 46(16), 2070–2078.CrossRefGoogle Scholar
  158. Ramesh, K., Biswas, A. K., & Patra, A. K. (2015b). Zeolitic farming. Indian Journal of Agronomy, 60(2), 50–56.Google Scholar
  159. Ramesh, K., Damodar Reddy, D., Kumar Biswas, A., & Subba Rao, A. (2011). 4 zeolites and their potential uses in agriculture. Advances in Agronomy, 113, 215.Google Scholar
  160. Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science (New York, N.Y.), 326(5949), 123–125.CrossRefGoogle Scholar
  161. Razmi, Z., & Sepaskhah, A. R. (2012). Effect of zeolite on saturated hydraulic conductivity and crack behavior of silty clay paddled soil. Archives of Agronomy and Soil Science, 58(7), 805–816.CrossRefGoogle Scholar
  162. Rehakova, M., Čuvanová, S., Dzivak, M., Rimár, J., & Gaval’Ova, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8(6), 397–404.CrossRefGoogle Scholar
  163. Rivero, L., & Rodríguez-Fuentes, G. (1989). Cuban experience with the use of natural zeolite substrates in soilless culture. Notes, 405, 405–416.Google Scholar
  164. Roghani, M., Nakhli, S. A. A., Aghajani, M., Rostami, M. H., & Borghei, S. M. (2016). Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite. Journal of Water Process Engineering, 14, 101–107.CrossRefGoogle Scholar
  165. Sadeghi, L. A., Moazed, H., Hooshmand, A., & Chorom, M. (2010). Effects of Na-zeolite application on nitrate and ammonium retention in a silty loam soil under saturated conditions.Google Scholar
  166. Sarkar, B., & Naidu, R. (2015). Nutrient and water use efficiency in soil: the influence of geological mineral amendments. In Nutrient use efficiency: from basics to advances (pp. 29–44). Springer.Google Scholar
  167. Schwen, A., Bodner, G., Scholl, P., Buchan, G. D., & Loiskandl, W. (2011). Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil and Tillage Research, 113(2), 89–98.CrossRefGoogle Scholar
  168. Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., & Charkhi, A. (2011a). Adsorption of petroleum monoaromatics from aqueous solutions using granulated surface modified natural nanozeolites: systematic study of equilibrium isotherms. Water, Air, & Soil Pollution, 217(1–4), 611–625.CrossRefGoogle Scholar
  169. Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., Farhadi, F., & Nazmara, S. (2011b). Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles. Water, Air, & Soil Pollution, 219(1–4), 443–457.CrossRefGoogle Scholar
  170. Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., Nazmara, S., & AliMohammadi, M. (2011c). Adsorption of BTEX on surfactant modified granulated natural zeolite nanoparticles: parameters optimizing by applying Taguchi experimental design method. Clean: Soil, Air, Water, 39(10), 939–948.Google Scholar
  171. Sepaskhah, A., & Barzegar, M. (2010). Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agricultural Water Management, 98(1), 38–44.CrossRefGoogle Scholar
  172. Sepaskhah, A., & Yousefi, F. (2007). Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions. Soil Research, 45(5), 368–373.CrossRefGoogle Scholar
  173. Sfechis, S., Vidican, R., Şandor, M., Stoian, V., Şandor, V., & Muste, B. (2015). Using assessment of zeolite amendments in agriculture. ProEnvironment/ProMediu, 8(21).Google Scholar
  174. Sharpley, A. N., Herron, S., & Daniel, T. (2007). Overcoming the challenges of phosphorus-based management in poultry farming. Journal of Soil and Water Conservation, 62(6), 375–389.Google Scholar
  175. Sharpley, A. N., Chapra, S., Wedepohl, R., Sims, J., Daniel, T. C., & Reddy, K. (1994). Managing agricultural phosphorus for protection of surface waters: issues and options. Journal of Environmental Quality, 23(3), 437–451.CrossRefGoogle Scholar
  176. Stylianou, M., Inglezakis, V., & Loizidou, M. (2015). Comparison of Mn, Zn, and Cr removal in fluidized-and fixed-bed reactors by using clinoptilolite. Desalination and Water Treatment, 53(12), 3355–3362.CrossRefGoogle Scholar
  177. Suarez, D. L., Wood, J. D., & Lesch, S. M. (2006). Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agricultural Water Management, 86(1), 150–164.CrossRefGoogle Scholar
  178. Summaries, M. C. (2015). US Department of the Interior and US Geological Survey. Washington DC.Google Scholar
  179. Sutherland, A., Daroub, S., & Ognevich, I. (2004). Addition of clinoptilolite zeolite to a simulated sandy medium to reduce nitrogen leaching.Google Scholar
  180. Szerement, J., Ambrożewicz-Nita, A., Kędziora, K., & Piasek, J. (2014). Use of zeolite in agriculture and environmental protection. A short review. Вісник Національного університету (781), 172–177.Google Scholar
  181. Taheri-Sodejani, H., Ghobadinia, M., Tabatabaei, S., & Kazemian, H. (2015). Using natural zeolite for contamination reduction of agricultural soil irrigated with treated urban wastewater. Desalination and Water Treatment, 54(10), 2723–2730.CrossRefGoogle Scholar
  182. Talebnezhad, R., & Sepaskhah, A. R. (2013). Effects of bentonite on water infiltration in a loamy sand soil. Archives of Agronomy and Soil Science, 59(10), 1409–1418.CrossRefGoogle Scholar
  183. Tarkalson, D. D., & Ippolito, J. A. (2010). Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils. Soil Science, 175(7), 357–362.CrossRefGoogle Scholar
  184. Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105(2), 217–227.CrossRefGoogle Scholar
  185. Thirunavukkarasu, M., & Subramanian, K. (2014). Surface modified nano-zeolite used as carrier for slow release of sulphur. Journal of Applied and Natural Science, 6(1), 19–26.Google Scholar
  186. Thornton, A., Pearce, P., & Parsons, S. (2007a). Ammonium removal from digested sludge liquors using ion exchange. Water Research, 41(2), 433–439.CrossRefGoogle Scholar
  187. Thornton, A., Pearce, P., & Parsons, S. (2007b). Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. Journal of Hazardous Materials, 147(3), 883–889.CrossRefGoogle Scholar
  188. Tiquia, S., & Tam, N. (2000). Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technology, 72(1), 1–7.CrossRefGoogle Scholar
  189. Torma, S., Vilcek, J., Adamisin, P., Huttmanova, E., & Hronec, O. (2014). Influence of natural zeolite on nitrogen dynamics in soil. Turkish Journal of Agriculture and Forestry, 38(5), 739–744.CrossRefGoogle Scholar
  190. Vervoort, R., & Cattle, S. (2003). Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. Journal of Hydrology, 272(1), 36–49.CrossRefGoogle Scholar
  191. Vilcek, J., Torma, S., Adamisin, P., & Hronec, O. (2013). Nitrogen sorption and its release in the soil after zeolite application. Bulgarian Journal of Agricultural Science, 9(2), 228–234.Google Scholar
  192. Virta, R. L. (2002). Zeolites. US Geological Survey Minerals Yearbook-2002, 84.1–84.4.Google Scholar
  193. Waltz, F. C., Quisenberry, V. L., & McCarty, L. B. (2003). Physical and hydraulic properties of rootzone mixes amended with inorganics for golf putting greens. Agronomy Journal, 95(2), 395–404.CrossRefGoogle Scholar
  194. Wang, F., & Alva, A. (1996). Leaching of nitrogen from slow-release urea sources in sandy soils. Soil Science Society of America Journal, 60(5), 1454–1458.CrossRefGoogle Scholar
  195. Wang, J., Huang, J., Zhao, X., Wu, P., Horwath, W. R., Li, H., Jing, Z., & Chen, X. (2016a). Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degradation & Development, 27(1), 35–42.CrossRefGoogle Scholar
  196. Wang, K., Li, X., He, C., Chen, C., Bai, J., Ren, N., & Wang, J. (2014). Transformation of dissolved organic matters in swine, cow and chicken manures during composting. Bioresource Technology, 168, 222–228.CrossRefGoogle Scholar
  197. Wang, Y., Fan, J., Cao, L., & Liang, Y. (2016b). Infiltration and runoff generation under various cropping patterns in the red soil region of China. Land Degradation & Development, 27(1), 83–91.CrossRefGoogle Scholar
  198. Watanabe, Y., Yamada, H., Tanaka, J., Komatsu, Y., & Moriyoshi, Y. (2005). Ammonium ion exchange of synthetic zeolites: the effect of their open-window sizes, pore structures, and cation exchange capacities. Separation Science and Technology, 39(9), 2091–2104.CrossRefGoogle Scholar
  199. Weber, M., Barbarick, K., & Westfall, D. (1983). Ammonium adsorption by a zeolite in a static and a dynamic system. Journal of Environmental Quality, 12(4), 549–552.CrossRefGoogle Scholar
  200. Wei, Y., Fan, Y., Wang, M., & Wang, J. (2000). Composting and compost application in China. Resources, Conservation and Recycling, 30(4), 277–300.CrossRefGoogle Scholar
  201. Williams, K. A., & Nelson, P. V. (1997). Using precharged zeolite as a source of potassium and phosphate in a soilless container medium during potted chrysanthemum production. Journal of the American Society for Horticultural Science, 122(5), 703–708.Google Scholar
  202. Xiubin, H., & Zhanbin, H. (2001). Zeolite application for enhancing water infiltration and retention in loess soil. Resources, Conservation and Recycling, 34(1), 45–52.CrossRefGoogle Scholar
  203. Youssefi, S., & Waring, M. S. (2015). Indoor transient SOA formation from ozone α-pinene reactions: impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis. Atmospheric Environment, 112, 106–115.CrossRefGoogle Scholar
  204. Youssefi, S., & Waring, M. S. (2014). Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios. Environmental Science & Technology, 48(14), 7899–7908.CrossRefGoogle Scholar
  205. Youssefi, S., & Waring, M. (2012). Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments. Indoor Air, 22(5), 415–426.CrossRefGoogle Scholar
  206. Zhan, Y., Zhu, Z., Lin, J., Qiu, Y., & Zhao, J. (2010). Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. Journal of Environmental Sciences, 22(9), 1327–1334.CrossRefGoogle Scholar
  207. Zhang, P., Avudzega, D. M., & Bowman, R. S. (2007). Removal of perchlorate from contaminated waters using surfactant-modified zeolite. Journal of Environmental Quality, 36(4), 1069–1075.CrossRefGoogle Scholar
  208. Zhang, Q., Tongamp, W., & Saito, F. (2010). Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers. Industrial & Engineering Chemistry Research, 49(5), 2213–2216.CrossRefGoogle Scholar
  209. Zhang, Q., & Saito, F. (2009). Mechanochemical synthesis of slow-release fertilizers through incorporation of alumina composition into potassium/ammonium phosphates. Journal of the American Ceramic Society, 92(12), 3070–3073.CrossRefGoogle Scholar
  210. Zheng, T., Huang, Y., Zhang, C., & Liu, C. (2006). Reducing non-point source pollution with enhancing infiltration. Journal of Environmental Sciences, 18(1), 115–119.Google Scholar
  211. Zwingmann, N., Singh, B., Mackinnon, I. D., & Gilkes, R. J. (2009). Zeolite from alkali modified kaolin increases NH 4 retention by sandy soil: column experiments. Applied Clay Science, 46(1), 7–12.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Seyyed Ali Akbar Nakhli
    • 1
  • Madjid Delkash
    • 1
    Email author
  • Babak Ebrazi Bakhshayesh
    • 1
  • Hossein Kazemian
    • 2
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of DelawareNewarkUSA
  2. 2.Zeolitic & Nano-Materials LabWestern UniversityLondonCanada
  3. 3.College of Science and ManagementUniversity of Northern British ColumbiaPrince GeorgeCanada

Personalised recommendations