Skip to main content
Log in

Performance of Anaerobic Biotrickling Filter and Its Microbial Diversity for the Removal of Stripped Disinfection By-products

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this research was to evaluate the biodegradation of chloroform by using biotrickling filter (BTF) and determining the dominant bacteria responsible for the degradation. The research was conducted in three phases under anaerobic condition, namely, in the presence of co-metabolite (phase I), in the presence of co-metabolite and surfactant (phase II), and in the presence of surfactant but no co-metabolite (phase III). The results showed that the presence of ethanol as a co-metabolite provided 49% removal efficiency. The equivalent elimination capacity (EC) was 0.13 g/(m3 h). The addition of Tomadol 25-7 as a surfactant in the nutrient solution increased the removal efficiency of chloroform to 64% with corresponding EC of 0.17 g/(m3 h). This research also investigated the overall microbial ecology of the BTF utilizing culture-independent gene sequencing alignment of the 16S rRNA allowing identification of isolated species. Taxonomical composition revealed the abundance of betaproteobacteria and deltaproteobacteria with species level of 97%. Azospira oryzae (formally dechlorosoma suillum), Azospira restrica, and Geobacter spp. together with other similar groups were the most valuable bacteria for the degradation of chloroform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann, R. I., Ludwig, W., & Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews, 59(1), 143–169.

    CAS  Google Scholar 

  • Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., et al. (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10), 5884–5891.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater. Washington: American Public Health Assoc. and Water Environment Federation.

    Google Scholar 

  • Atikovic, E., Suidan, M. T., & Maloney, S. W. (2008). Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX. Chemosphere, 72(11), 1643–1648.

    Article  CAS  Google Scholar 

  • ATSDR. (2015). Agency for toxic substances and disease registry. Toxic Substances Portal-Chloroform. https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=16. Accessed 10 Sept 2016.

  • Bae, H. S., Rash, B. A., Rainey, F. A., Nobre, M. F., Tiago, I., da Costa, M. S., & Moe, W. M. (2007). Description of Azospira restricta sp. nov., a nitrogenfixing bacterium isolated from groundwater. International journal of systematic and evolutionary microbiology, 57(7), 1521–1526

  • Bagley, D. M., & Gossett, J. M. (1995). Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227. Applied and Environmental Microbiology, 61(9), 3195–3201.

    CAS  Google Scholar 

  • Balasubramanian, P., Philip, L., & Bhallamudi, S. M. (2012). Biotrickling filtration of complex pharmaceutical VOC emissions along with chloroform. Bioresource Technology, 114, 149–159. https://doi.org/10.1016/j.biortech.2012.03.035.

    Article  CAS  Google Scholar 

  • Becker, J. G., & Freedman, D. L. (1994). Use of cyanocobalamin to enhance anaerobic biodegradation of chloroform. Environmental Science & Technology, 28(11), 1942–1949.

    Article  CAS  Google Scholar 

  • Boonchan, S., Britz, M. L., & Stanley, G. A. (1998). Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnology and Bioengineering, 59(4), 482–494.

    Article  CAS  Google Scholar 

  • Bouwer, E. J., Rittmann, B. E., & McCarty, P. L. (1981). Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Environmental Science & Technology, 15(5), 596–599.

    Article  CAS  Google Scholar 

  • Bruce, E. R., & Perry, L. M. (2001). Environmental biotechnology: principles and applications (Vol. 400). New York: McGrawHill.

    Google Scholar 

  • Capone, K. A., Dowd, S. E., Stamatas, G. N., & Nikolovski, J. (2011). Diversity of the human skin microbiome early in life. J. Investigative Dermatolo., 131(10), 2026–2032.

    Article  CAS  Google Scholar 

  • Cappelletti, M., Frascari, D., Zannoni, D., & Fedi, S. (2012). Microbial degradation of chloroform. Applied Microbiology and Biotechnology, 96(6), 1395–1409.

    Article  CAS  Google Scholar 

  • Chan, W.-C., & You, H.-Z. (2009). Nonionic surfactant Brij35 effects on toluene biodegradation in a composite bead biofilter. African Journal of Biotechnology, 8(20), 5406–5414.

  • Clark, R. M., Adams, J. Q., & Lykins Jr., B. W. (1994). DBP control in drinking water: cost and performance. Journal of Environmental Engineering, 120(4), 759–782.

    Article  CAS  Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. and Environ. Microbiol., 72(7), 5069–5072.

    Article  CAS  Google Scholar 

  • Dolfing, J. (2013). Syntrophic propionate oxidation via butyrate: a novel window of opportunity under methanogenic conditions. Appl. and Environ. Microbiol., 79(14), 4515–4516.

    Article  CAS  Google Scholar 

  • Dowd, S. E., Sun, Y., Wolcott, R. D., Domingo, A., & Carroll, J. A. (2008). Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog. and Dis., 5(4), 459–472.

    Article  CAS  Google Scholar 

  • Durmishi, B. H., Reka, A. A., Gjuladin-Hellon, T., Ismaili, M., Srbinovski, M., & Shabani, A. (2015). Disinfection of drinking water and trihalomethanes: a review. International J. Advan. Res. Chem. Sci. (IJARCS), 2(11), 45–56.

    Google Scholar 

  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinform., 26(19), 2460–2461.

    Article  CAS  Google Scholar 

  • Egli, C., Scholtz, R., Cook, A. M., & Leisinger, T. (1987). Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Letters, 43(3), 257–261.

    Article  CAS  Google Scholar 

  • Egli, C., Tschan, T., Scholtz, R., Cook, A. M., & Leisinger, T. (1988). Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Applied and Environmental Microbiology, 54(11), 2819–2824.

    CAS  Google Scholar 

  • Egli, C., Stromeyer, S., Cook, A. M., & Leisinger, T. (1990). Transformation of tetra-and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbi Letters, 68(1–2), 207–212.

    Article  CAS  Google Scholar 

  • Eren, A. M., Zozaya, M., Taylor, C. M., Dowd, S. E., Martin, D. H., & Ferris, M. J. (2011). Exploring the diversity of Gardnerella vaginalis in the genitourinary tract microbiota of monogamous couples through subtle nucleotide variation. PLoS One, 6(10), e26732.

    Article  CAS  Google Scholar 

  • Fakruddin, M., & Mannan, K. (2013). Methods for analyzing diversity of microbial communities in natural environments. Ceylon Journal of Science (Biological Sciences), 42(1).

  • Gupta, M., Sharma, D., Suidan, M. T., & Sayles, G. D. (1996). Biotransformation rates of chloroform under anaerobic conditions—I. Methanogenesis. Water Research, 30(6), 1377–1385.

    Article  CAS  Google Scholar 

  • Hassan, A. A., & Sorial, G. A. (2008). n-Hexane biodegradation in trickle bed air biofilters. Water, Air, & Soil Pollut., 8(3–4), 287–296.

    Article  Google Scholar 

  • Hassan, A. A., & Sorial, G. A. (2010). A comparative study for destruction of n-hexane in trickle bed air biofilters. Chemical Engineering Journal, 162(1), 227–233.

    Article  Google Scholar 

  • Houel, N., Selleck, R. E., & Pearson, F. H. (1979). Air stripping of chloroform from water. J. Environ. Eng. Divis., 105(4), 777–781.

    CAS  Google Scholar 

  • Hutchison, J. M., Poust, S. K., Kumar, M., Cropek, D. M., MacAllister, I. E., Arnett, C. M., et al. (2013). Perchlorate reduction using free and encapsulated Azospira oryzae enzymes. Environmental Science & Technology, 47(17), 9934–9941.

    Article  CAS  Google Scholar 

  • Kim, Y., Semprini, L., & Arp, D. J. (1997). Aerobic cometabolism of chloroform and 1,1,1-trichloroethane by butane-grown microorganisms. Bioremediation Journal, 1(2), 135–148.

    Article  CAS  Google Scholar 

  • Krone, U. E., Laufer, K., Thauer, R. K., & Hogenkamp, H. P. (1989). Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. The Biochemist, 28(26), 10061–10065.

    Article  CAS  Google Scholar 

  • Leson, G., & Winer, A. M. (1991). Biofiltration: an innovative air pollution control technology for VOC emissions. J. Air & Waste Manage. Assoc., 41(8), 1045–1054.

    Article  CAS  Google Scholar 

  • Li, J., & Blatchley, E. R. (2007). Volatile disinfection byproduct formation resulting from chlorination of organic-nitrogen precursors in swimming pools. Environmental Science & Technology, 41(19), 6732–6739.

    Article  CAS  Google Scholar 

  • Mahon, S. (2013). Biofiltration for the treatment of recalcitrant volatile organic compounds in polluted air streams. Report document: Air & Water Pollution Control Engineering. http://www.ewp.rpi.edu/hartford/~ernesto/F2013/AWPPCE/StudProj/Mahon/Mahon-PR-AP.pdf. Accessed 10 September 2016.

  • McCulloch, A. (2003). Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere, 50(10), 1291–1308.

    Article  CAS  Google Scholar 

  • Mikesell, M. D., & Boyd, S. A. (1990). Dechlorination of chloroform by Methanosarcina strains. Appl. and Environ. Microbiol., 56(4), 1198–1201.

    CAS  Google Scholar 

  • Mulligan, C., Yong, R., & Gibbs, B. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60(1), 371–380.

    Article  Google Scholar 

  • Novak, P., Daniels, L., & Parkin, G. (1998). Enhanced dechlorination of carbon tetrachloride and chloroform in the presence of elemental iron and Methanosarcina barkeri, Methanosarcina thermophila, or Methanosaeta concillii. Environmental Science & Technology, 32(10), 1438–1443.

    Article  CAS  Google Scholar 

  • Picardal, F. W., Arnold, R. G., Couch, H., Little, A., & Smith, M. (1993). Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Applied and Environmental Microbiology, 59(11), 3763–3770.

    CAS  Google Scholar 

  • Richardson, S. D., DeMarini, D. M., Kogevinas, M., Fernandez, P., Marco, E., Lourencetti, C., et al. (2010). What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ. Health Perspec., 118(11), 1523.

    Article  CAS  Google Scholar 

  • Shemer, H., & Narkis, N. (2005). Trihalomethanes aqueous solutions sono-oxidation. Water Research, 39(12), 2704–2710.

    Article  CAS  Google Scholar 

  • Song, T., Yang, C., Zeng, G., Yu, G., & Xu, C. (2012). Effect of surfactant on styrene removal from waste gas streams in biotrickling filters. Journal of Chemical Technology and Biotechnology, 87(6), 785–790.

    Article  CAS  Google Scholar 

  • Swanson, K. S., Dowd, S. E., Suchodolski, J. S., Middelbos, I. S., Vester, B. M., Barry, K. A., et al. (2011). Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. The ISME J., 5(4), 639–649.

    Article  CAS  Google Scholar 

  • Tiehm, A. (1994). Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl.and Environ. Microbiol., 60(1), 258–263.

    CAS  Google Scholar 

  • USEPA (2016). Ground water and drinking water: table of regulated drinking water contaminants. https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants. Accessed 09/10/2016.

  • Volkering, F., Breure, A. M., van Andel, J. G., & Rulkens, W. H. (1995). Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 61(5), 1699–1705.

    CAS  Google Scholar 

  • Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N., & Daims, H. (2002). Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek, 81(1–4), 665–680.

    Article  CAS  Google Scholar 

  • Webster, T. S., Devinny, J. S., Torres, E. M., & Basrai, S. S. (1997). Microbial ecosystems in compost and granular activated carbon biofilters. Biotechnology and Bioengineering, 53(3), 296–303.

    Article  CAS  Google Scholar 

  • Wu, S., Yassine, M. H., Suidan, M. T., & Venosa, A. D. (2015). Anaerobic biodegradation of soybean biodiesel and diesel blends under methanogenic conditions. Water Research, 87, 395–402.

    Article  CAS  Google Scholar 

  • Ying, G.-G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environ. International, 32(3), 417–431.

    Article  CAS  Google Scholar 

  • Yoon, I.-K., & Park, C.-H. (2002). Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter. Journal of Bioscience and Bioengineering, 93(2), 165–169.

    Article  CAS  Google Scholar 

  • Yoon, I.-K., Kim, C.-N., & Park, C.-H. (2002). Optimum operating conditions for the removal of volatile organic compounds in a compost-packed biofilter. Korean Journal of Chemical Engineering, 19(6), 954–959.

    Article  CAS  Google Scholar 

  • Yu, Z., & Smith, G. B. (1997). Chloroform dechlorination by a wastewater methanogenic consortium and cell extracts of Methanosarcina barkeri. Water Research, 31(8), 1879–1886.

    Article  CAS  Google Scholar 

  • Zehraoui, A., Kapoor, V., Wendell, D., & Sorial, G. A. (2014). Impact of alternate use of methanol on n-hexane biofiltration and microbial community structure diversity. Biochemical Engineering Journal, 85, 110–118.

    Article  CAS  Google Scholar 

  • Zhai, J., Wang, Z., Shi, P., & Long, C. (2017). Microbial community in a biofilter for removal of low load nitrobenzene waste gas. PLoS One, 12(1), e0170417.

    Article  Google Scholar 

  • Zitomer, D. H., & Speece, R. E. (1995). Methanethiol in nonacclimated sewage sludge after addition of chloroform and other toxicants. Environmental Science & Technology, 29(3), 762–768.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work conducted was partly supported by the contract number EP11C000147 obtained from the EPA Path Forward Innovation Project from the EPA-University of Cincinnati Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Sorial.

Ethics declarations

Disclaimer

The views expressed in this article are those of the authors and do not reflect the official policy or position of the Unites State Environmental Protection Agency. Mention of trade names, products, or services does not convey official EPA approval, endorsement, or recommendation. This manuscript has been subjected to the Agency’s review and has been approved for publication.

Electronic supplementary material

ESM 1

(DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezgebe, B., Sorial, G.A., Sahle-Demessie, E. et al. Performance of Anaerobic Biotrickling Filter and Its Microbial Diversity for the Removal of Stripped Disinfection By-products. Water Air Soil Pollut 228, 437 (2017). https://doi.org/10.1007/s11270-017-3616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3616-x

Keywords

Navigation