Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stryphnodendron rotundifolium Mart. As an Adjuvant for the Plant Germination and Development Under Toxic Concentrations of HgCl2 and AlCl2

  • 133 Accesses

  • 3 Citations

Abstract

Heavy metals, chemical elements considered toxic at certain concentrations, can be considered potential threats to plants, animals, and biological resources of a particular ecosystem. Among them, mercury and aluminum, when involved in bioaccumulation processes, can cause damage to various organ systems of both animals and plants. In vegetables, heavy metals produce reactive oxygen species (ROS), which are involved in the occurrence of malformations and deficits in the growth of roodets and plumule of several species of plants, which justifies the study of natural antioxidant agents that may come to reverse or ameliorate the deleterious effects caused by these compounds. In this sense, this study aims to evaluate the cytoprotective effect of hydroethanolic extract of Stryphnodendron rotundifolium Mart., species popularly known as “barbatimão” against the heavy metals mercury and aluminum in vegetable model, because of its known antioxidant potential. To this end, there was the cytoprotection test in microbial and lettuce seeds (germination) in order to ascertain the potential of the said extract on the protection of roots and stem this. It was observed that the extract showed no allelopathic effect on lettuce seeds at a concentration of 32 μg/mL and in combination with HgCl2 and AlCl3, it enabled a higher growth in the roodets and stem Lactuta sativa L. These results demonstrated that the extract of Stryphnodendron rotundifolium can be an alternative to solve the problem with soil contamination by heavy metals, showing thus its promising potential cytoprotective in plant species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baligar, V. C., Schaffert, R. E., Santos, H. L., Pitta, G. V. E., & Bahia Filho, A. F. C. (1993). Soil aluminium effects on uptake, influx, and transport of nutrients in sorghum genotypes. Plant and Soil, 150, 271–277.

  2. Barceló, J., Poschenrieder, C., Vázquez, M. D., et al. (1996). Aluminum phytotoxicity. Fertilizer Research, 43, 217–223.

  3. Benassi, J.C. (2004) O uso de bioindicadores e biomarcadores na avaliação do processo de remediação de efluente de lixiviação de carvão mineral utilizando microesferas de quitosana. MSc. Thesis., UFSC, Florianópolis, 106p.

  4. Brasil. (2009). Ministério da Agricultura, Departamento de Produção Vegetal. Divisão de Sementes e Mudas. Rules to seed analysis. Brasília: LANARV/SNAD/MA 188p.

  5. Camargo, C. E. O., & Almeida, O. B. (1983). Tolerância de cultivares de arroz a diferentes níveis de alumínio em solução nutritiva. Bragantia, 42, 191–201.

  6. Costa, J. G. M., Leite, G. O., Dubois, A. F., Seeger, R. L., Boligon, A. A., Athayde, M. L., Campos, A. R., & Rocha, J. B. T. (2012). Antioxidant effect of Stryphnodendron rotundifolium Martius extracts from Cariri-Ceará state (Brazil): potential involvement in its therapeutic use. Molecules, 17, 934–950.

  7. Dantas, A. C. M., Fortes, G. R. L., Silva, J. B., Nezi, A. N., & Rodrigues, A. C. (2001). Tolerância ao alumínio em porta-enxertos somaclonais de macieira cultivados em solução nutritiva. Pesquisa Agropecuária Brasileira, 36, 615–623.

  8. Delhaize, E., & Ryan, P. R. (1995). Aluminum toxicity and tolerance in plants. Plant Physiology, 107, 315–321.

  9. Demirak, A., Yilmaz, F., Tuna, A. L., & Ozdemir, N. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63, 1451–1458.

  10. Di Stasi, L. C. (1996). Plantas medicinais: arte e ciência. Um guia de estudo interdisciplinar. São Paulo: EDUNESP.

  11. Echart, C. L., & Cavalli-Molina, S. (2001). Fitotoxicidade do alumínio: efeitos, mecanismo de tolerância e seu controle genético. Rev Ciencia Rural, 31, 531–541.

  12. Einhellig, F. A. (1986). Mechanisms and modes of action of allelochemicals. In A. R. Putnam & C. S. Tang (Eds.), The science of allelopathy (pp. 171–187). Toronto: Wiley.

  13. Ermolayev, V., Weschke, W., & Manteuffel, R. (2003). Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. Journal of Experimental Botany, 54, 2745–2756.

  14. Fernandes, M. S. (2006). Plant mineral nutrition. Viçosa: SBCS.

  15. Ferreira, R. P., Moreira, A., & Rassini, J. B. (2006). Toxidez de alumínio em culturas anuais. São Carlos: Embrapa Pecuária Sudeste 35p.

  16. Forzza, R. C., & De Janeiro, J. B. R. (2010). Catálogo de plantas e fungos do Brasil. Rio de Janeiro: IJB.

  17. Foy, C. D. (1992). Soil chemical factors limiting plant root growth. In J. L. Hatfield & B. A. Stewart (Eds.), Limitations to plant root growth (pp. 97–149). New York: Springer-Verlag.

  18. Graci, S., Collura, R., Cammilleri, G., Buscemi, M. D., Giangrosso, G., Principato, D., Gervasi, T., Cicero, N., & Ferrantelli, V. (2017). Mercury accumulation in Mediterranean Fish and Cephalopods Species of Sicilian coasts: correlation between pollution and the presence of Anisakis parasites. Natural Product Research, 31, 1156–1162.

  19. Gressel, J. B., & Holm, L. G. (1964). Chemical inhibibition of cropgermination by weed seed and the nature of the inhibition by Abutilon theophrasti. Weed Research, 4, 44–53.

  20. Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: possible modes of action. Journal of Natural Products, 59, 205–215.

  21. Lacerda, L. D., & Miguens, F. C. (2011). A ressureição do metal: contaminação em sedimentos de estuários e deltas. Ci Hoje, 48, 38–41.

  22. Laks, P. E. (1991). Chemistry of bark. Wood and cellulosic chemistry. In D. N. S. Hon & N. Shiraishi (Eds.), Cap. 7 (pp. 257–330). New York: Marcel Dekker Inc..

  23. Leite, N.F. (2014) Atividade citoprotetora de extratos hidroalcoólicos de Psidum sobraleanum Proença Landrum e Psidium mysinites DC. contra danos tóxicos causados pelo mercúrio. MSc. Thesis. URCA, Crato.

  24. Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273–278.

  25. Massot, N., Poschenrieder, C., & Barceló, J. (1992). Differential response of three bean (Phaseolus vulgaris L.) cultivars to aluminum. Acta Bot Neerlandica, 41, 293–298.

  26. Medeiros, A. R. M. (1990). Alelopathy. Horti Sul, 1, 27–32.

  27. Merck (2012). Mercurium Chloride. URL http://www.merckmillipore.com/brazil/cloreto-de-mercurioi/MDA_CHEM-104425/p_9Yyb.s1LJtQAAAEWC.EfVhTl. Accessed 01 Nov 2016.

  28. Miguel, P. S. B., Gomes, F. T., Rocha, W. S. D., Martins, C. E., Carvalho, C. A., & Oliveira, A. V. (2010). Aluminum phytotoxicity: effects, tolerance mechanisms and its genetic control. CES Rev, 24, 13–29.

  29. Oliveira, D.R. (2010) Contribuição ao estudo da bioprospecção farmacológica de plantas medicinais do Nordeste brasileiro: Barbatimão (Stryphnodendron rotundifolium Mart.). MSc. Thesis. URCA, Crato.

  30. Patrick, L. (2002). Mercury toxicity and antioxidants: part I: role of glutathione ad alpha-lipoc acid in the treatment of mercury toxicity. Alternative Medicine Review, 7, 456–471.

  31. Samac, D. A., & Tesfaye, M. (2003). Plant improvement for tolerance to aluminum in acid soils—a review. Plant Cell, Tissue and Organ Culture, 75, 189–207.

  32. Santos, S. C., & Mello, J. C. P. (2007). Tannins. In S. CMO (Ed.), Pharmacognosy: from plant to drug (6th ed., pp. 615–656). Porto Alegre: EDUFRGS.

  33. Santos, A. M., Dall’agnol, M., Janke, A., Bissani, C. A., Santos, L. C., & Leão, M. L. (2011). Characterization of diploid species of Lotus in response to aluminum toxicity. Revista Brasileira de Zootecnia, 40, 978–984.

  34. Shetty, K., Chun, S., Vattem, D. A., & Lin, Y. (2005). Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochemistry, 40, 809–816.

  35. Soares, S. E. (2002). Phenolic acids as antioxidants. Revista de Nutrição, 15, 71–81.

  36. Sobral-Souza, C. E., Leite, N. F., Cunha, F. A. B., Pinho, A. I., Albuquerque, R. S., Carneiro, J. N., Menezes, I. R. A., Costa, J. G. M., Franco, J. L., & Coutinho, H. D. M. (2014). Cytoprotective effect against mercury chloride and bioinsecticidal activity of Eugenia jambolana Lam. Arabian Journal of Chemistry, 7, 165–170.

  37. Souza, N., Gomes, M., Maciel, R., Silva, R., Trescher, T., Gorza, F., Pedro, G., Correa, K., Souza, M., & Silva, J. (2013). Evaluation of the antimicrobial activity of Stryphnodendron barbatiman against Citrobacter freundii. Materials Sciences and Applications, 12, 780–785.

  38. Sphear, C. R., & Souza, L. A. C. (2004). Tempo de exposição e fonte de cálcio na seleção de soja tolerante ao alumínio em hidroponia. Boletim Pesquisa e Desenvolvimento Embrapa, 1, 1–16.

  39. Tinôco, A. A. P., Azevedo, I. C. D. D., Marques, E. A. G., Mounteer, A. H., Martins, C. P., Nascentes, R., Reis, E. L., & Natalino, R. (2010). Evaluation of mercury contamination in Descoberto, MG. Engenharia Sanitaria e Ambiental, 15, 305–314.

  40. Veloso, C. A. C., Malavolta, E., Muraoka, T., & Carvalho, E. J. M. (2000). Aluminum and calcium absorption by black pepper seedlings. Science in Agriculture, 57, 141–145.

  41. Xing, Y., & White, P. J. (1996) Antioxidants from cereals and legumes. In F. Shahidi (Ed.), Natural antioxidants chemistry, health effects, and applications (pp. 25–55). Champaign: AOCS Press.

  42. Zuanazzi, J. A. S., & Montanha, J. A. (2004). Flavonoids. In C. M. O. Simões, E. P. Schenkel, G. Gosmann, J. C. P. Mello, L. A. Mentz, & P. R. Petrovick (Eds.), Farmacognosia da planta ao medicamento (5th ed., pp. 519–537). Porto Alegre/Florianópolis: UFRGS/ UFSC.

Download references

Author information

Correspondence to Henrique D. M. Coutinho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coutinho, H.D.M., Martins, G.M.A.B., Morais-Braga, M.F.B. et al. Stryphnodendron rotundifolium Mart. As an Adjuvant for the Plant Germination and Development Under Toxic Concentrations of HgCl2 and AlCl2 . Water Air Soil Pollut 228, 424 (2017). https://doi.org/10.1007/s11270-017-3614-z

Download citation

Keywords

  • Heavy metals
  • Cytoprotection
  • Germination