Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Degradation of Recalcitrant Safranin T Through an Electrochemical Process and Three Photochemical Advanced Oxidation Technologies

  • 196 Accesses

  • 2 Citations

Abstract

This work studies the degradation of safranin T (SF, a recalcitrant pollutant) by an electrochemical process and three photochemical advanced oxidation technologies (TiO2 photocatalysis, UV/H2O2, and photo-Fenton). The degradation routes of each process were elucidated initially. Based on the mineralization extent, improvement of the treated solutions’ biodegradability, and energy consumption, the most suitable process was identified. Interestingly, in the electrochemical system, safranin T was efficiently eliminated through electrogenerated HOCl. In contrast, the popular photo-Fenton process was unable to degrade SF. Moreover, the pollutant was refractory to highly energetic UV254 irradiation. Meanwhile, the UV/H2O2 and TiO2 photocatalysis processes removed SF slowly. Interestingly, the electrochemical system produced biodegradable solutions. Furthermore, the electrical energy consumption (EC) for the 100% removal of SF showed that the electrochemical process only spent 0.04 and 0.06% of the EC needed by TiO2 photocatalysis and UV/H2O2, respectively. Therefore, the fast SF degradation, the high biodegradability intensification, and the very low energy consumption evidenced the relative advantages of the electrochemical process for the remediation of water containing safranin T. Finally, to obtain a deeper understanding of SF degradation by the electrochemical system, an analysis of structural transformations was made. It was found that the electrogenerated HOCl initially attacked the central azine and the aromatic amines on SF. Subsequently, aliphatic compounds were formed, which due to their biodegradable character could be completely eliminated by a conventional biological system or discharged into natural media.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdullah, F. H., Rauf, M. A., & Ashraf, S. S. (2007). Photolytic oxidation of Safranin-O with H2O2. Dyes and Pigments, 72(3), 349–352. https://doi.org/10.1016/j.dyepig.2005.09.015.

  2. Ahmed, K. A. M., & Huang, K. (2012). Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods. Materials Chemistry and Physics, 133(2–3), 605–610. https://doi.org/10.1016/j.matchemphys.2012.01.009.

  3. Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011.

  4. Bruijnincx, P. C. A., Buurmans, I. L. C., Gosiewska, S., Moelands, M. A. H., Lutz, M., Spek, A. L., et al. (2008). Iron(II) complexes with bio-inspired N,N,O ligands as oxidation catalysts: olefin epoxidation and cis-dihydroxylation. Chemistry - A European Journal, 14(4), 1228–1237. https://doi.org/10.1002/chem.200700573.

  5. Challis, J. K., Hanson, M. L., Friesen, K. J., & Wong, C. S. (2014). A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps. Environmental Science. Processes & Impacts, 16(4), 672–696. https://doi.org/10.1039/c3em00615h.

  6. Chen, Y., Yang, S., Wang, K., & Lou, L. (2005). Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. Journal of Photochemistry and Photobiology A: Chemistry, 172, 47–54. https://doi.org/10.1016/j.jphotochem.2004.11.006.

  7. Comninellis, C., & Chen, G. (2010). In C. Comninelis & G. Chen (Eds.), Electrochemistry for the environment. London: Springer.

  8. De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., De Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–1957. https://doi.org/10.1016/j.watres.2012.01.014.

  9. Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Research, 42, 13–51. https://doi.org/10.1016/j.watres.2007.07.025.

  10. El-Kemary, M., Abdel-Moneam, Y., Madkour, M., & El-Mehasseb, I. (2011). Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications. Journal of Luminescence, 131(4), 570–576. https://doi.org/10.1016/j.jlumin.2010.10.025.

  11. Fatta-kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Review—Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693–709. https://doi.org/10.1016/j.chemosphere.2011.06.082.

  12. Feng, Y. J., & Li, X. Y. (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Research, 37(10), 2399–2407. https://doi.org/10.1016/S0043-1354(03)00026-5.

  13. Gar Alalm, M., Tawfik, A., & Ookawara, S. (2015). Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55–63. https://doi.org/10.1016/j.jwpe.2015.09.007.

  14. Gerardi, M. H. (2002). The gram stain. In Nitrification and denitrification in the activated sludge process (pp. 169–170). Wiley Online Library. http://onlinelibrary.wiley.com/doi/10.1002/0471216682.app1/pdf

  15. Giraldo, A. L., Erazo-Erazo, E. D., Flórez-Acosta, O. A., Serna-Galvis, E. A., & Torres-Palma, R. A. (2015). Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components. Chemical Engineering Journal, 279, 103–114. https://doi.org/10.1016/j.cej.2015.04.140.

  16. Gupta, V. K., Mittal, A., Jain, R., Mathur, M., & Sikarwar, S. (2006). Adsorption of Safranin-T from wastewater using waste materials—activated carbon and activated rice husks. Journal of Colloid and Interface Science, 303(1), 80–86. https://doi.org/10.1016/j.jcis.2006.07.036.

  17. Gupta, V. K., Jain, R., Mittal, A., Mathur, M., & Sikarwar, S. (2007). Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. Journal of Colloid and Interface Science, 309, 464–469. https://doi.org/10.1016/j.jcis.2006.12.010.

  18. Haberfield, P., & Paul, D. (1965). The chlorination of anilines. Proof of the existence of an N-chloro intermediate. Journal of the American Chemical Society, 87(23), 5502. https://doi.org/10.1021/ja00951a052.

  19. Hayat, K., Gondal, M. A., Khaled, M. M., Yamani, Z. H., & Ahmed, S. (2011). Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. Journal of Hazardous Materials, 186(2–3), 1226–1233. https://doi.org/10.1016/j.jhazmat.2010.11.133.

  20. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2), 145–157. https://doi.org/10.1016/S0926-3373(00)00276-9.

  21. Inoue, M., & Kubo, M. (1976). Magnetic interaction in metal complexes with bridging nitrogen-heterocyclic ligands. Coordination Chemistry Reviews, 21(1), 1–27. https://doi.org/10.1016/S0010-8545(00)82049-4.

  22. Janiak, C. (2000). A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands †. Dalton Transactions (Cambridge, England: 2003), 0(21), 3885–3896. doi:https://doi.org/10.1039/b003010o.

  23. Lopez-Alvarez, B., Torres-Palma, R. A., Ferraro, F., & Peñuela, G. (2012). Solar photo-Fenton treatment of carbofuran: analysis of mineralization, toxicity, and organic by-products. Journal of Environmental Science and Health, Part A, 47(13), 2141–2150. https://doi.org/10.1080/10934529.2012.696029.

  24. Mahajan, V., Patil, S., Sonawane, S., & Sonawane, G. (2016). Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst. AIMS Biophysics, 3(3), 415–430. https://doi.org/10.3934/biophy.2016.3.415.

  25. Ohtani, B. (2014). Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. Physical Chemistry Chemical Physics: PCCP, 16, 1788–1797. https://doi.org/10.1039/c3cp53653j.

  26. Olguín, J., & Brooker, S. (2011). Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coordination Chemistry Reviews, 255(1–2), 203–240. https://doi.org/10.1016/j.ccr.2010.08.002.

  27. Oturan, M. A., Pimentel, M., Oturan, N., & Sirés, I. (2008). Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment. Electrochimica Acta, 54(2), 173–182. https://doi.org/10.1016/j.electacta.2008.08.012.

  28. Palma-Goyes, R. E., Silva-Agredo, J., Gonzalez, I., & Torres-Palma, R. A. (2014). Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochimica Acta, 140, 427–433. https://doi.org/10.1016/j.electacta.2014.06.096.

  29. Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 109(12), 6541–6569. https://doi.org/10.1021/cr9001319.

  30. Petri, B. G., Watts, R. J., Teel, A. L., Huling, S. G., & Brown, R. A. (2011). Fundamentals of ISCO using hydrogen peroxide. In R. L. Siegrist et al. (Eds.), In situ chemical oxidation for groundwater remediation (Vol. 3, pp. 33–87). Berlin: Springer Science + Business Media. https://doi.org/10.1007/978-1-4419-7826-4.

  31. Pignatello, J. J., Oliveros, E., & Mackay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84. https://doi.org/10.1080/10643380500326564.

  32. Pouretedal, H. R., Norozi, A., Keshavarz, M. H., & Semnani, A. (2009). Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. Journal of Hazardous Materials, 162(2–3), 674–681. https://doi.org/10.1016/j.jhazmat.2008.05.128.

  33. Rajkumar, D., & Palanivelu, K. (2003). Electrochemical degradation of cresols for wastewater treatment. Industrial and Engineering Chemistry Research, 42(9), 1833–1839. https://doi.org/10.1021/ie020759e.

  34. Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1–3), 10–18. https://doi.org/10.1016/j.cej.2009.02.026.

  35. Sandler, S. R., & Karo, W. (1986). Azo compounds. In Organic functional group preparations, volume II (2nd ed., pp. 388–389). Orlando: Academic. https://books.google.com.co/books?id=qJw7qyRkL5AC&pg=PA388&lpg=PA388&dq=azine+%2B+chlorine&source=bl&ots=pevycvzyDe&sig=l4NhgUBDThWhYt78e-Ic_nVj6D0&hl=es&sa=X&ved=0ahUKEwiVjuXg14jSAhVF6SYKHfFUAHkQ6AEIJTAD#v=onepage&q=azine%2Bchlorine&f=false

  36. Santa Cruz Biotechnology Inc. (2012). Material safety data sheet of Safranin T. Santa Cruz: Santa Cruz Biotechnology, Inc. http://datasheets.scbt.com/sc-203758.pdf.

  37. Santoro, A., Kershaw Cook, L. J., Kulmaczewski, R., Barrett, S. A., Cespedes, O., & Halcrow, M. A. (2015). Iron(II) complexes of tridentate indazolylpyridine ligands: enhanced spin-crossover hysteresis and ligand-based fluorescence. Inorganic Chemistry, 54(2), 682–693. https://doi.org/10.1021/ic502726q.

  38. Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez, O. A., & Torres-Palma, R. A. (2016a). Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chemical Engineering Journal, 284, 953–962. https://doi.org/10.1016/j.cej.2015.08.154.

  39. Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016b). Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes. Science of the Total Environment, 541, 1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029.

  40. Serna-Galvis, E. A., Berrio-Perlaza, K. E., & Torres-Palma, R. A. (2017a). Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9985-2.

  41. Serna-Galvis, E. A., Jojoa-Sierra, S. D., Berrio-Perlaza, K. E., Ferraro, F., & Torres-Palma, R. A. (2017b). Structure-reactivity relationship in the degradation of three representative fluoroquinolone antibiotics in water by electrogenerated active chlorine. Chemical Engineering Journal, 315, 552–561. https://doi.org/10.1016/j.cej.2017.01.062.

  42. Shariati, S., Faraji, M., Yamini, Y., & Rajabi, A. A. (2011). Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination, 270(1–3), 160–165. https://doi.org/10.1016/j.desal.2010.11.040.

  43. Sirés, I., & Brillas, E. (2012). Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environment International, 40, 212–229. https://doi.org/10.1016/j.envint.2011.07.012.

  44. Torres, R. A., Sarria, V., Torres, W., Peringer, P., & Pulgarin, C. (2003). Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an electrochemical-biological coupling. Water Research, 37(13), 3118–3124.

  45. Villegas-Guzman, P., Silva-Agredo, J., González-Gómez, D., Giraldo-Aguirre, A. L., Flórez-Acosta, O., & Torres-Palma, R. A. (2015). Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(1), 40–48. https://doi.org/10.1080/10934529.2015.964606.

  46. Wang, J., & XU, L. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698.

  47. Zaghbani, N., Hafiane, A., & Dhahbi, M. (2008). Removal of Safranin T from wastewater using micellar enhanced ultrafiltration. Desalination, 222(1–3), 348–356. https://doi.org/10.1016/j.desal.2007.01.148.

Download references

Acknowledgments

The authors thank Stephanía Lopera, Estefanía Salazar, and Margee Perea for their research assistance. E. Serna-Galvis thanks Colciencias for his Ph.D. scholarship (Convocatoria 647 de 2014).

Funding

The authors thank IUCMA and Colciencias for the financial support through the projects: “Tratamiento de residuos orgánicos vía Procesos Avanzados de Oxidación (PAOs) del Laboratorio de Ambiental de la Institución Universitaria Colegio Mayor de Antioquia (IUCMA)” and “Desarrollo y evaluación de un sistema electroquímico asistido con luz solar para la eliminación de contaminantes emergentes en agua (No. 111565842980), respectively.

Author information

Correspondence to Efraím A. Serna-Galvis or Ricardo A. Torres-Palma.

Electronic Supplementary Material

ESM 1

(DOCX 254 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Granda-Ramírez, C.F., Hincapié-Mejía, G.M., Serna-Galvis, E.A. et al. Degradation of Recalcitrant Safranin T Through an Electrochemical Process and Three Photochemical Advanced Oxidation Technologies. Water Air Soil Pollut 228, 425 (2017). https://doi.org/10.1007/s11270-017-3611-2

Download citation

Keywords

  • Pollutant degradation
  • Water treatment
  • Processes comparison
  • Biodegradability intensification