Skip to main content
Log in

Recovery of Ammonium by Powder Synthetic Zeolites from Wastewater Effluents: Optimization of the Regeneration Step

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrogen recovery and valorization is gaining interest due to the current need for nitrogen removal, so it is of great interest that ammonium-selective sorbents be evaluated. In this study, a zeolitic material synthesized from coal fly ash (Ze–Na) in sodium form as well as its modification to potassium form (Ze–K) were evaluated as sorbent materials for the recovery of ammonium from wastewater effluents. The sorption performance was assessed through three consecutive sorption-desorption cycles reporting opposite behavior in terms of ammonium sorption capacity. Decreasing in the case of Ze–Na and to slightly increase for Ze–K due to alkaline activation of zeolite surface. The maximum sorption capacities obtained were 109 ± 4 mg NH4/g and 33 ± 1 mg NH4/g for Ze–Na and Ze–K, respectively. It is important to point out that in the case of Ze–Na, the maximum sorbent capacity was obtained during the first sorption cycle whereas in the case of Ze–K, it was obtained during the last working cycle due to the alkaline regeneration. Kinetic studies showed that after every regeneration step, the sorption kinetics turn faster as alkaline desorption increased the zeolite-specific surface, thus increasing the size of porous and enhancing the diffusion through the particle. Results obtained indicate that sorption capacity decreased significantly after every working cycle using Ze–Na whereas Ze–K followed the opposite behavior despite its initial lower sorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdi, G. H., Khui, M. K., & Eshghi, S. (2006). Effects on natural zeolite on growth and flowering on strawberry. International Journal of Agricultural Research, 1, 384–389.

    Article  CAS  Google Scholar 

  • Alshameri, A., Yan, C., Al-Ani, Y., Dawood, A. S., Ibrahim, A., Zhou, C., & Wang, H. (2014). An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: kinetics, isotherms, and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 554–564. https://doi.org/10.1016/j.jtice.2013.05.008.

    Article  CAS  Google Scholar 

  • Auerbach, M., Carrado, K. a., & Dutta, P. K. (2003). Handbook of zeolite science and technology. Science.

  • Bassin, J. P., Kleerebezem, R., Dezotti, M., & van Loosdrecht, M. C. M. (2012). Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures. Water Research, 46(12), 3805–3816. https://doi.org/10.1016/j.watres.2012.04.015.

    Article  CAS  Google Scholar 

  • Diamantis, V., Eftaxias, A., Bundervoet, B., & Vestraete, W. (2014). Performance of the biosorptive activated sludge (BAS) as pre-treatment to UF for decentralized wastewater reuse. Bioresource Technology, 156, 314–321.

    Article  CAS  Google Scholar 

  • Ferrier, R. J., Cai, L., Lin, Q., Gorman, G. J., & Neethling, S. J. (2016). Models for apparent reaction kinetics in heap leaching: a new semi-empirical approach and its comparison to shrinking core and other particle-scale models. Hydrometallurgy, 166, 22–33.

    Article  CAS  Google Scholar 

  • Gruener, J. E., Ming, D. W., Henderson, K. E., & Galindo, C. (2003). Common ion effects in zeoponic substrates: wheat plant growth experiment. Microporous and Mesoporous Materials, 61, 223–230.

    Article  CAS  Google Scholar 

  • Guaya, D., Valderrama, C., Farran, A., Armijos, C., & Cortina, J. L. (2015). Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal, 271, 204–213. https://doi.org/10.1016/j.ce.2015.03.003.

    Article  CAS  Google Scholar 

  • Gupta, V., Sadegh, H., Yari, M., Shahryari Ghoshekandi, R., Maazinejad, B., & Chhardori, M. (2015). Removal of ammonium ions from wastewater: a short review in development of efficient methods. Gobal Journal of Environmental Science and Management, 1(2), 71–94.

    CAS  Google Scholar 

  • He, Y., Lin, H., Dong, Y., Liu, Q., & Wang, L. (2016). Simultaneous removal of ammonium and phosphate by alkaline- activated and lanthanum-impregnated zeolite. Chemosphere, 164, 387–395.

    Article  CAS  Google Scholar 

  • Hermassi, M., Valderrama, C., Gibert, O., Moreno, N., Querol, X., Batis, N. H., & Cortina, J. L. (2017). Recovery of nutrients (N-P-K) from potassium-rich sludge anaerobic digestion side-streams by integration of a hybrid sorption-membrane ultrafiltration process: use of powder reactive sorbents as nutrient carriers. Science of the Total Environment, 599–600, 422–430.

    Article  Google Scholar 

  • Hua, Q. X., Zhou, J. M., Wang, H. Y., Du, C. W., Chen, X. Q., & Li, J. Y. (2006). Effects of modified clinoptilolite on phosphorus mobilisation and potassium or ammonium release in ferrosols. Australian Journal of Soil Research, 44, 285–290.

    Article  CAS  Google Scholar 

  • Huang, H., Yang, L., Xue, Q., Liu, J., Hou, L., & Ding, L. (2015). Removal of ammonium from swine wastewater by zeolite combined with chlorination for regeneration. Journal of Environmental Management, 160, 333–341. https://doi.org/10.1016/j.jenvman.2015.06.039.

    Article  CAS  Google Scholar 

  • Jimenez, J., Miller, M., Bott, C., Murthy, S., De Clippeleir, H., & Wett, B. (2015). High-rate activated sludge system for carbon management—evaluation of crucial process mechanisms and design parameters. Water Research, 87, 476–482.

    Article  CAS  Google Scholar 

  • Kim, Y.-S., Lee, Y.-H., An, B., Choi, S.-A., Park, J.-H., Jurng, J.-S., et al. (2012). Simultaneous removal of phosphate and nitrate in wastewater using high-capacity anion-exchange resin. Water, Air, & Soil Pollution, 223(9), 5959–5966. https://doi.org/10.1007/s11270-012-1331-1.

    Article  CAS  Google Scholar 

  • Li, J., Qiu, J., Sun, Y., & Long, Y. (2000). Studies on natural STI zeolite: modification, structure, adsorption and catalysis. Microporous and Mesoporous Materials, 37, 365–378.

    Article  CAS  Google Scholar 

  • Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., et al. (2013). Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Separation and Purification Technology, 103, 15–20. https://doi.org/10.1016/j.seppur.2012.10.005.

    Article  CAS  Google Scholar 

  • Marcelino, M., Wallaert, D., Guisasola, A., & Baeza, J. a. (2011). A two-sludge system for simultaneous biological C, N and P removal via the nitrite pathway. Water Science & Technology, 64(5), 1142. https://doi.org/10.2166/wst.2011.398.

    Article  CAS  Google Scholar 

  • Mazloomi, F., & Jalali, M. (2016). Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. Journal of Environmental Chemical Engineering, 4, 1664–1673.

    Article  CAS  Google Scholar 

  • McGilloway, R., Weaver, R., Ming, D., & Gruener, J. E. (2003). Nitrification in a zeoponic substrate. Plant and Soil, 256, 371–378.

    Article  CAS  Google Scholar 

  • Mezohegyi, G., Bilad, M. R., & Vankelecom, I. F. J. (2012). Direct sewage up-concentration by submerged aerated and vibrated membranes. Bioresource Technology, 118, 1–7.

    Article  CAS  Google Scholar 

  • Millar, G. J., Winnett, A., Thompson, T., & Couperthwaite, S. J. (2016). Equilibrium studies of ammonium exchange with Australian natural zeolites. Journal of Water Process Engineering, 9, 47–57.

    Article  Google Scholar 

  • Moreno, N., Querol, X., Ayora, C., Pereira, C. F., & Janssen-Jurkovicová, M. (2001). Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environmental Science and Technology, 35(17), 3526–3534. https://doi.org/10.1021/es0002924.

    Article  CAS  Google Scholar 

  • Otal, E., Vilches, L. F., Luna, Y., Poblete, R., García-Maya, J. M., & Fernández-Pereira, C. (2013). Ammonium ion adsorption and settleability improvement achieved in a synthetic zeolite-amended activated sludge. Chinese Journal of Chemical Engineering, 21(9), 1062–1068. https://doi.org/10.1016/S1004-9541(13)60566-2.

    Article  CAS  Google Scholar 

  • Pauling, L. (1960). The nature of the chemical bond. Ithaca: Cornell University Press 978-0-8014-0333-0.

    Google Scholar 

  • Querol, X., Moreno, N., Alastuey, A., Juan, R., Ayora, C., Medinaceli, A., et al. (1996). Synthesis of high ion exchange zeolites from coal fly ash. Geologica Acta, 1, 49–57.

    Google Scholar 

  • Ramesh, K., Biswas, A. K., Somasundaram, J., & Subba Rao, A. (2010). Nanoporous zeolites in farming: current status and issues ahead. Current Science, 99(6), 760–765.

    Google Scholar 

  • Ramesh, K., Reddy, D. D., Biswas, A. K., & Rao, A. S. (2011). Zeolites and their potential uses in agriculture. Advances in Agronomy, 113, 215–236. https://doi.org/10.1016/B978-0-12-386473-4.00009-9.

    Google Scholar 

  • Sancho, I., Licon, E., Valderrama, C., de Arespacochaga, N., López-Palau, S., & Cortina, J. L. (2017). Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors. Science of the Total Environment, 584–585, 244–251.

    Article  Google Scholar 

  • Scherson, Y. D., & Criddle, C. S. (2014). Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals. Environmental Science and Technology, 48(15), 8420–8432.

    Article  CAS  Google Scholar 

  • Sherry, H. S. (2003a). Ion exchange. In S. M. Auerbach, K. A. Carrado, & P. K. Dutta (Eds.), Handbook of zeolite science and technology (pp. 1006–1061). New York: Marcel Dekker, Inc..

    Google Scholar 

  • Sherry, H. S. (2003b). Ion exchange. In S. M. Auerbach, K. A. Carrado, & P. K. Dutta (Eds.), Handbook of zeolite science and technology (pp. 1006–1061). New York: Marcel Dekker, Inc..

    Google Scholar 

  • Takaya, C. A., Fletcher, L. A., Singh, S., Anyikude, K. U., & Ross, A. B. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, 518–527. https://doi.org/10.1016/j.chemosphere.2015.11.052.

    Article  CAS  Google Scholar 

  • Tashauoei, H. R., Movahedian, H. A., Amin, M. M., Kamali, M., Nikaeen, M., & Dastjerdi, V. M. (2010). Removal of cadmium and humic acid from aqueous solutions using surface modified nanozeolite A. International journal of Environmental Science and Technology, 7(3), 497–508.

    Article  CAS  Google Scholar 

  • Valderrama, C., Barios, J. I., Farran, A., & Cortina, J. L. (2010). Evaluation of phenol/aniline (single and binary) removal from aqueous solutions onto hyper-cross-linked polymeric resin (Macronet MN200) and granular activated carbon in fixed-bed column. Water, Air, & Soil Pollution, 215(1–4), 285–297. https://doi.org/10.1007/s11270-010-0478-x.

    Google Scholar 

  • Verstraete, W., & Vlaeminck, S. E. (2011). ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. International Journal of Sustainable Development and World Ecology, 18(3), 253–264.

    Article  Google Scholar 

  • Wu, D., Hu, Z., Wang, X., He, S., & Kong, H. (2007). Use of zeolitized coal fly ash in the simultaneous removal of ammonium and phosphate from aqueous solution. Frontiers of Environmental Science and Engineering in China, 1(2), 213–220. https://doi.org/10.1007/s11783-007-0037-x.

    Article  Google Scholar 

  • Wu, D., Zhang, B., Li, C., Zhang, Z., & Kong, H. (2006). Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. Journal of Colloid and Interface Science, 304(2), 300–306. https://doi.org/10.1016/j.jcis.2006.09.011.

    Article  CAS  Google Scholar 

  • Yang, K., Zhang, X., Chao, C., Zhang, B., & Liu, J. (2014). In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution. Carbohydrate Polymers, 107(1), 103–109. https://doi.org/10.1016/j.carbpol.2014.02.001.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, Z., Wang, X., Zheng, L., & Gu, X. (2017). Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. Bioresource Technology, 241, 473–481.

    Article  CAS  Google Scholar 

  • You, X., Farran, A., Guaya, D., Valderrama, C., Soldatov, V., & Cortina, J. L. (2016). Phosphate removal from aqueous solutions using a hybrid fibrous exchanger containing hydrated ferric oxide nanoparticles. Journal of Environmental Chemical Engineering, 4, 388–397.

    Article  CAS  Google Scholar 

  • You, X., Guaya, D., Farran, A., Valderrama, C., & Cortina, J. L. (2015). Phosphate removal from aqueous solution using a hybrid impregnated polymeric sorbent containing hydrated ferric oxide (HFO). Journal of Chemical Technology & Biotechnology. https://doi.org/10.1002/jctb.4629.

  • Zhang, B.-H., Wu, D.-Y., Wang, C., He, S.-B., Zhang, Z.-J., & Kong, H.-N. (2007). Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. Journal of Environmental Sciences (China), 19(5), 540–545.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., Tian, B., et al. (2011b). Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination, 271, 111–121.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., Zhang, L., et al. (2011a). Ammonium removal from aqueous solution by zeolites synthesized from low-calcium and high-calcium fly ashes. Desalination, 277(1–3), 46–53. https://doi.org/10.1016/j.desal.2011.03.085.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhou, Z., An, Y., Du, S., Ruan, D., Zhao, C., et al. (2017). Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant. Chemosphere, 178, 565–572.

    Article  CAS  Google Scholar 

  • Zhang, X., Dong, L., Liang, Y., He, Y., Zhang, Y., & Zhang, J. (2013). Autotrophic nitrogen removal from domestic sewage in MBR-CANON system and the biodiversity of functional microbes. Bioresource Technology, 150, 113–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also want to thank X. Querol and O. Font for providing the raw material as well as D. Qiu for her dedication in experimental work.

Funding

This study has been supported by the Waste2Product project (CTM2014-57302-R) financed by the Ministry of Science and Innovation and the Catalan government (project ref. 2014SGR050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Valderrama.

Electronic supplementary material

ESM 1

(DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, X., Valderrama, C., Querol, X. et al. Recovery of Ammonium by Powder Synthetic Zeolites from Wastewater Effluents: Optimization of the Regeneration Step. Water Air Soil Pollut 228, 396 (2017). https://doi.org/10.1007/s11270-017-3577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3577-0

Keywords

Navigation