Advertisement

Water, Air, & Soil Pollution

, 228:391 | Cite as

In Vitro Effects of Agriculture Pollutants on Microcrustacean and Fish Acid Phosphatases

  • Darlene D. Dantzger
  • Miriam Dantzger
  • Claudio M. Jonsson
  • Hiroshi AoyamaEmail author
Article

Abstract

Chemical inputs from agricultural activities represent a threat to aquatic biota and its biochemical systems. Among these systems, acid phosphatases are involved in autophagic digestive processes, decomposing organic phosphates, signaling pathways, and other metabolic routes. In vitro tests are helpful to generate hypotheses about pollutant mechanisms of action through comparison of the toxicity effects of these compounds. In this work, we investigated the inhibitory effects of four organic pesticides and three metals on the acid phosphatases extracted from the freshwater microcrustacean Daphnia similis and the fish Metynnis argenteus. Our results demonstrated that only the metals have considerable inhibitory effects (50% or higher) on the enzyme activities. The calculated median effect concentrations (IC50) for the enzyme inhibition were 0.139 mM Hg2+ (fish enzyme), 0.652 mM Cu2+ (fish enzyme), and 1.974 mM Al3+ (Daphnia enzyme). Due to the relatively low value of the inhibition parameter for Hg2+, its inhibitory property could be used as a tool for Hg2+ detection in environmental samples. The enzyme activities obtained in the presence of the inhibitors are potential data as in vivo biomarkers for metals in both aquatic species.

Keywords

Acid phosphatases Pollutants Toxicity Biomarker 

Notes

Funding information

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundo de Apoio ao Ensino, à Pesquisa e à Extensão FAEPEX/UNICAMP, for some support for this research and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for postgraduate scholarship to DDD.

Compliance with Ethical Standards

All experiments with fish were approved by the Ethics Committee for the Use of Animals of the State University of Campinas (CEUA/UNICAMP) under the registration no. 3641-1 (law no. 11794/2008).

References

  1. ABNT - Associação Brasileira de Normas Técnicas (2004). Normas Brasileiras NBR 12713: Ecotoxicologia aquática – Toxicidade Aguda – Método de ensaio com Daphnia spp. (Cladocera,Crustacea). Rio de Janeiro. pp 21.Google Scholar
  2. Adair, W. L. J., & Cafmeyer, N. (1989). Characterization of dolichyl diphosphate phosphatase from rat liver. Chemistry and Physics of Lipids, 51, 279–284.  https://doi.org/10.1016/0009-3084(89)90015-7.CrossRefGoogle Scholar
  3. Agrawal, A., Pandey, R. S., & Sharma, B. (2010). Water pollution with special reference to pesticide contamination in India. Journal of Water Resource and Protection, 2, 432–448.  https://doi.org/10.4236/jwarp.2010.25050.CrossRefGoogle Scholar
  4. Ahmad, S., Ali, A., & Ashfaq, A. (2016). Heavy metal pollution, sources, toxic effects and techniques adopted for control. International Journal of Current Research and Academic Review, 4, 39–58.  10.20546/ijcrar.2016.406.005.CrossRefGoogle Scholar
  5. Alrumman, S. A., El-kott, A. F., & Keshk, S. M. A. S. (2016). Water pollution: source & treatment. American Journal of Environmental Engineering, 6, 88–98.  https://doi.org/10.5923/j.ajee.20160603.02.Google Scholar
  6. Alwan, S. F. (2013). Effect of aluminium exposure on some blood parameters in the Tilapia zillii fish. International Journal of Pharmacy and Life Sciences, 4, 2766–2769.Google Scholar
  7. Barabasz, W., Albinska, D., Jaskowska, M., & Lipiec, J. (2002). Ecotoxicology of aluminium. Polish Journal of Environmental Studies, 11, 199–203.Google Scholar
  8. Barra, M. E., Fanikos, J., Connors, J. M., Sylvester, K. W., Piazza, G., & Goldhaber, S. Z. (2016). Evaluation of dose-reduced direct oral anticoagulant therapy. The American Journal of Medicine, 129, 1198–1204.  https://doi.org/10.1016/j.amjmed.2016.05.041.
  9. Bhangale, B. S., & Mahajan, P. R. (2016). Catalase activity in the digestive glands of the freshwater mussels, Lamellidens consobrinus after heavy metal stress. International Journal of Recent Scientific Research, 7, 8863–8866 http://www.recentscientific.com/recentscientific@gmail.com.Google Scholar
  10. Bittl, T., Vrba, J., Nedoma, J., & Kopácek, J. (2001). Impact of ionic aluminum on extracellular phosphatases in acidified lakes. Environmental Microbiology, 3, 578–587.  https://doi.org/10.1046/j.1462-2920.2001.00230.x.CrossRefGoogle Scholar
  11. Boavida, M. J., & Heath, R. T. (1984). Are the phosphatases released by Daphnia magna components of its food? Limnology and Oceanography, 29, 641–645.  https://doi.org/10.4319/lo.1984.29.3.0641.CrossRefGoogle Scholar
  12. Boszke, L., Głosińska, G., & Siepak, J. (2002). Some aspects of speciation of mercury in a water environment. Polish Journal of Environmental Studies, 11, 285–298.Google Scholar
  13. Bounias, M., Kruk, I., Nectoux, M., & Popeskovic, D. (1996). Toxicology of cupric salts on honeybees. V. Gluconate and sulfate action on gut alkaline and acid phosphatases. Ecotoxicology and Environmental Safety, 35, 67–76.  https://doi.org/10.1006/eesa.1996.0082.CrossRefGoogle Scholar
  14. Bozcaarmutlu, A. (2007). Mechanism of inhibition of purified leaping mullet (Liza saliens) NADPH-cytochrome P450 reductase by toxic metals: aluminum and thallium. Journal of Biochemical and Molecular Toxicology, 21, 340–347.  https://doi.org/10.1002/jbt.20200.CrossRefGoogle Scholar
  15. Bull, H., Murray, P. G., Thomas, D., Fraser, A. M., & Nelson, P. N. (2002). Acid phosphatases. Molecular Pathology, 55, 65–72.CrossRefGoogle Scholar
  16. Calabrese, E. J. (2016). The emergence of the dose–response concept in biology and medicine. International Journal of Molecular Sciences, 17, 777.  https://doi.org/10.3390/ijms17050777.CrossRefGoogle Scholar
  17. Chen, Q. X., Zheng, W. Z., Lin, J. Y., Shi, Y., Xie, W. Z., & Zhou, H. (2000). Effect of metal ions on the activity of green crab (Scylla serrata) alkaline phosphatase. The International Journal of Biochemistry and Cell Biology, 32, 879–885.  https://doi.org/10.1016/S1357-2725(00)00026-1.CrossRefGoogle Scholar
  18. Coban, T. A., Senturk, M., Ciftci, M., & Kufrevioglu, O. I. (2007). Effects of some metal ions on human erythrocyte glutathione reductase: an in vitro study. Protein & Peptide Letters, 14, 1027–1030.  https://doi.org/10.2174/092986607782541060.CrossRefGoogle Scholar
  19. Coelho, K. S., & Rocha, O. (2010). Assessment of the potential toxicity of a linear alkylbenzene sulfonate (LAS) to freshwater animal life by means of cladoceran bioassays. Ecotoxicology, 19, 812–818.  https://doi.org/10.1007/s10646-009-0458-3.CrossRefGoogle Scholar
  20. Coelho, L. M., Rezende, H. C., Coelho, L. M., de Sousa, P. A. R., Melo, D. F. O., & Coelho, N. M. M. (2015). Bioremediation of polluted waters using microorganisms. In N. Shiomi (Ed.), Advances in bioremediation of wastewater and polluted soil. Rijeka: Publisher InTech.  https://doi.org/10.5772/60770.Google Scholar
  21. Czuczwar, M., Kis, J., Potasinski, A., Turski, W. A., & Przesmycki, K. (2001). Isobolographic analysis of the interaction between vigabatrin and baclofen in the formalin test in mice. Polish Journal of Pharmacology, 53, 527–530.CrossRefGoogle Scholar
  22. Davis, F., Vidyasagar, S., Maiya, A., & Kamath, A. (2013). Dose response relationship between exercise intensity and C reactive protein in sedentary individuals. Journal of Science and Medicine in Sport, 16, e30.  https://doi.org/10.1016/j.jsams.2013.10.071.CrossRefGoogle Scholar
  23. El Demerdash, F. M., & Elagamy, E. I. (1999). Biological effects in Tilapia nilotica fish as indicators of pollution by cadmium and mercury. International Journal of Environmental Health Research, 9, 173–186.  https://doi.org/10.1080/09603129973146.CrossRefGoogle Scholar
  24. El Demerdash, F. M., Yousef, M. I., & Elagamy, E. I. (2001). Influence of paraquat, glyphosate, and cadmium on the activity of some serum enzymes and protein electrophoretic behaviour (in vitro). Journal of Environmental Science and Health, Part B, 36, 29–42.  https://doi.org/10.1081/PFC-100000914.CrossRefGoogle Scholar
  25. Elendt, B. P., & Bias, W. R. (1990). Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. Magna. Water Research, 24, 1152–1167.  https://doi.org/10.1016/0043-1354(90)90180-E.Google Scholar
  26. Elsebae, A. A. (1996). Enzyme activity as a biomarker for shrimp and artemia exposure to insecticides. Alexandria Science Exchange Journal, 17, 417–428.Google Scholar
  27. Elumalai, M., Antunes, C., & Guilhermino, L. (2005). Alterations of reproductive parameters in the crab Carcinus maenas after exposure to metals. Water, Air, & Soil Pollution, 160, 245–258.  https://doi.org/10.1007/s11270-005-2992-9.CrossRefGoogle Scholar
  28. Fathi, A. A. (2002). Toxicological response of the green algae Scenedesmus bijuga to mercury and lead. Folia Microbiologica, 47, 667–671.CrossRefGoogle Scholar
  29. Froese, R., & Pauly, D. Eds. (2011). Fish base. World Wide Web electronic publication. URL: www.fishbase.org [version 08/2011].
  30. Gautam, R. K., Sharma, S. K., Mahiya, S., & Chattopadhyaya, M. C. (2014). Heavy metals. In S. K. Sharma (Ed.), Water: presence, removal and safety. London: Publ. The Royal Society of Chemistry.  https://doi.org/10.1039/9781782620174-FP001.Google Scholar
  31. Gensemer, R. W., & Playle, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Science and Technology, 29, 315–450.  https://doi.org/10.1080/10643389991259245.CrossRefGoogle Scholar
  32. Gheorghe, S., Stoica, C., Vasile, G. G., Nita-Lazar, M., Stanescu, E., & Lucaciu, I. E. (2017). Metals toxic effects in aquatic ecosystems: modulators of water quality. In H. Tutu (Ed.), Water quality. Rijeka: Publisher: InTech.  https://doi.org/10.5772/65744.Google Scholar
  33. Gill, T. S., Tewari, H., & Pande, J. (1991). In vivo and in vitro effects of cadmium on selected enzymes in different organs of the fish Barbus conchonius Ham (rosy barb). Comparative Biochemistry & Physiology, Part C, 100, 501–505.  https://doi.org/10.1016/0742-8413(91)90030-W.CrossRefGoogle Scholar
  34. Gill, T. S., Tewari, H., & Pande, J. (1992). Short and long effects of copper on the rosy barb (Puntius conchonius Ham.) Ecotoxicology and Environmental Safety, 23, 294–306.  https://doi.org/10.1016/0147-6513(92)90079-I.CrossRefGoogle Scholar
  35. Goldman, P. (1984). Effect of bioavailability on dose-response relationships. The American Journal of Medicine, 77, 47–51.  https://doi.org/10.1016/S0002-9343(84)80007-8.CrossRefGoogle Scholar
  36. Granjeiro, J. M., Ferreira, C. V., Jucá, M. B., Taga, E. M., & Aoyama, H. (1997). Bovine kidney low molecular weight acid phosphatase: FMN-dependent kinetics. Biochemistry and Molecular Biology International, 41, 1201–1208.Google Scholar
  37. Granjeiro, P. A., Ferreira, C. V., Granjeiro, J. M., Taga, E. M., & Aoyama, H. (1999). Purification and kinetic properties of a castor bean seed acid phosphatase containing sulfhydryl groups. Physiologia Plantarum, 107, 151–158.  https://doi.org/10.1034/j.1399-3054.1999.100201.x.CrossRefGoogle Scholar
  38. Havelková, M., Randák, T., Blahová, J., Slatinská, I., & Svobodová, Z. (2008). Biochemical markers for the assessment of aquatic environment contamination. Interdisciplinary Toxicology, 1, 169–181.  https://doi.org/10.2478/v10102-010-0034-y.CrossRefGoogle Scholar
  39. Hook, S. E., Gallagher, E. P., & Batley, G. E. (2014). The role of biomarkers in the assessment of aquatic ecosystem health. Integrated Environmental Assessment and Management, 10, 327–341.  https://doi.org/10.1002/ieam.1530.CrossRefGoogle Scholar
  40. Hosokawa, M., Endo, G., Kuroda, K., & Horiguchi, S. (1991). Influence of sulfate, Ca, and Mg on the acute toxicity of potassium dichromate to Daphnia similis. The Bulletin of Environmental Contamination and Toxicology, 46, 461–465.CrossRefGoogle Scholar
  41. Huang, R., Southall, N., Cho, M.-H., Xia, M., Inglese, J., & Austin, C. P. (2008). Characterization of diversity in toxicity mechanism using in vitro cytotoxicity assays in quantitative high throughput screening. Chemical Research in Toxicology, 21, 659–667.  https://doi.org/10.1021/tx700365e.CrossRefGoogle Scholar
  42. Jansson, M. (1981). Induction of high phosphatase activity by aluminum in acid lakes. Archiv Fur Hydrobiologie, 93, 32–44.Google Scholar
  43. Johnson, D. W. (1968). Pesticides, and fishes: a review of selected literature. Transactions of the American Fisheries Society, 97, 398–424.  https://doi.org/10.1577/1548-8659(1968)97[398:PAFROS]2.0.CO;2.CrossRefGoogle Scholar
  44. Jonsson, C. M., & Aoyama, H. (2007). In vitro effect of agriculture pollutants and their joint action on Pseudokirchneriella subcapitata acid phosphatase. Chemosphere, 69, 849–855.  https://doi.org/10.1016/j.chemosphere.2007.06.024.CrossRefGoogle Scholar
  45. Jonsson, C. M., & Aoyama, H. (2010). Effect of copper on the activation of the acid phosphatase from the green algae Pseudokirchneriella subcapitata. Biometals, 23, 93–98.  https://doi.org/10.1007/s10534-009-9270-z.CrossRefGoogle Scholar
  46. Jonsson, C. M., Ferracini, V. L., Paraíba, L. C., Rangel, M., & Aguiar, S. R. (2002). Alterações bioquímicas e acúmulo em pacus (Metynnis argenteus) expostos ao paclobutrazol. Scientia Agricola, 59, 441–446.CrossRefGoogle Scholar
  47. Jonsson, C. M., Paraiba, L. C., & Aoyama, H. (2009). Metals and linear alkylbenzene sulphonate as inhibitors of the algae Pseudokirchneriella subcapitata acid phosphatase activity. Ecotoxicology, 18, 610–619.  https://doi.org/10.1007/s10646-009-0319-0.CrossRefGoogle Scholar
  48. Jonsson, C. M., Moura e Silva, M. S. G., Macedo, V. S., Dantzger, D. D., Vallim, J. H., Marigo, A. L. S., & Aoyama, H. (2015). Prediction of a low-risk concentration of diflubenzuron to aquatic organisms and evaluation of clay and gravel in reducing the toxicity. Pan-American Journal of Aquatic Sciences, 10, 259–272.Google Scholar
  49. Kamada, M., Abe, T., Kitayuguchi, J., Imamura, F., Lee, I.-M., Kadowaki, M., Sawada, S., Miyachi, M., Matsui, Y., & Uchio, Y. (2016). Dose-response relationship between sports activity and musculoskeletal pain in adolescents. Pain, 157, 1339–1345.  https://doi.org/10.1097/j.pain.0000000000000529.CrossRefGoogle Scholar
  50. Katsnelson, B. A., Panov, V. G., Varaksin, A. N., Minigalieva, I. A., Privalova, L. I., & Sutunkova, M. P. (2016). Changes in the dose–response relationship of one toxicant under simultaneous exposure to another toxicant. Dose Response. 14, 1–9. Published online Nov 9. doi:  https://doi.org/10.1177/1559325816672935.
  51. Khangarot, B. S., & Rathore, R. S. (2003). Effects of copper on respiration, reproduction, and some biochemical parameters of water flea Daphnia magna Straus. The Bulletin of Environmental Contamination and Toxicology, 70, 112–117.  https://doi.org/10.1007/s00128-002-0163-x.CrossRefGoogle Scholar
  52. Larramendy, M. L., & Soloneski, S. (Eds.). (2016). Environmental health risk—hazardous factors to living species (p. 276). Rijeka: Publisher: InTech.  https://doi.org/10.5772/61472.Google Scholar
  53. Loffredo, E., & Traversa, A. (2016). Phytodecontamination of water systems from phenolic endocrine disruptors and the regulation role of natural organic matter. The Open Biotechnology Journal, 10, 173–183.  https://doi.org/10.2174/1874070701610010173.CrossRefGoogle Scholar
  54. Lombi, E., Stevens, D. P., & McLaughlin, M. J. (2010). Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity. Environmental Pollution, 158, 2110–2116.  https://doi.org/10.1016/j.envpol.2010.03.006.CrossRefGoogle Scholar
  55. Machado, A. A. S., Zarfl, C., Rehse, S., & Kloas, W. (2017). Low-dose effects: nonmonotonic responses for the toxicity of a Bacillus thuringiensis biocide to Daphnia magna. Environmental Science & Technology, 51, 1679–1686.  https://doi.org/10.1021/acs.est.6b03056.CrossRefGoogle Scholar
  56. Mahmoud, E. K., & Ghoneim, A. M. (2016). Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt. Solid Earth, 7, 703–711.  https://doi.org/10.5194/se-7-703-2016.CrossRefGoogle Scholar
  57. Mazorra, M. T., Rubio, J. A., & Blasco, J. (2002). Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comparative Biochemistry and Physiology-Part B, 131, 241–249.  https://doi.org/10.1016/S1096-4959(01)00502-4.CrossRefGoogle Scholar
  58. Mir, G. H., Tharani, M., Hussain, A., Ahmad, Y., & Rashid, A. (2016). Variations in acid phosphatase (ACP) and alkaline phosphatase (ALP) activities in liver and kidney of a fresh water fish Labeo rohita expoxed to heavy metal concentrations. European Journal of Pharmaceutical and Medical Research, 3, 398–401.Google Scholar
  59. Misra, V., Kumar, V., Pandey, S. D., & Viswanathan, P. N. (1991). Biochemical alterations in fish fingerlings (Cyprinus carpio) exposed to sublethal concentration of linear alkyl benzene sulphonate. Archives of Environmental Contamination and Toxicology, 21, 514–517.CrossRefGoogle Scholar
  60. Nakazato, H., Okamoto, T., Ishikawa, K., & Okuyama, H. (1997). Purification and characterization of phosphatase inducibly synthesized in Spirodela oligorrhiza grown under phosphate-deficient conditions. Plant Physiology and Biochemistry, 35, 437–446.Google Scholar
  61. Nalewajko, C., & Paul, B. (1985). Effects of manipulations of aluminum concentrations and pH on phosphate uptake and photosynthesis of planktonic communities in two precambrian shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1946–1953.  https://doi.org/10.1139/f85-241.CrossRefGoogle Scholar
  62. Özkara, A., Akyıl, D., & Konuk, M. (2016). Pesticides, environmental pollution, and health. In M. L. Larramendy & S. Soloneski (Eds.), Environmental health risk—hazardous factors to living species. Rijeka: Publisher: InTech.  https://doi.org/10.5772/63094.Google Scholar
  63. Parasuraman, S. (2011). Toxicological screening. Journal of Pharmacology & Pharmacotherapeutics, 2, 74–79.  https://doi.org/10.4103/0976-500X.81895.CrossRefGoogle Scholar
  64. Pavelkic, V. M., Gopcevic, K. R., Krstic, D. Z., & Ilic, M. A. (2008). The influence of Al3+ ion on porcine pepsin activity in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry, 23, 1002–1010.  https://doi.org/10.1080/14756360701841095.CrossRefGoogle Scholar
  65. Phillips, B. M., Anderson, B. S., Hunt, J. W., Siegler, K., Voorhees, J. P., Tjeerdema, R. S., & McNeill, K. (2012). Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA). Environmental Toxicology and Chemistry, 31, 1595–1603.  https://doi.org/10.1002/etc.1860.CrossRefGoogle Scholar
  66. Rathore, R. S., & Khangarot, B. S. (2003). Effects of water hardness and metal concentration on a freshwater Tubifex tubifex Muller. Water, Air, & Soil Pollution, 142, 341–356.  https://doi.org/10.1023/A:1022016021081.CrossRefGoogle Scholar
  67. Rehman, M. Z., Ullah, I., & Abdullah, S. (2016). Toxic effects of a mixture of heavy metal pollutants on fresh water fish species Cirrhina mrigala L. Bulletin of Environmental Studies, 1, 63–68.Google Scholar
  68. Rocha, J. B., Tuerlinckx, S. M., Schetinger, M. R., & Folmer, V. (2004). Effect of group 13 metals on porphobilinogen synthase in vitro. Toxicology and Applied Pharmacology, 200, 169–176.  https://doi.org/10.1016/j.taap.2004.04.007.CrossRefGoogle Scholar
  69. Rodgher, S., Espíndola, E. L., & Lombardi, A. T. (2010). Suitability of Daphnia similis as an alternative organism in ecotoxicological tests: implications for metal toxicity. Ecotoxicology, 19, 1027–1033.  https://doi.org/10.1007/s10646-010-0484-1.CrossRefGoogle Scholar
  70. Schimmel, S. C., Patrick Jr., J. M., & Wilson, Jr. A. J. (1977). Acute toxicity to and bioconcentration of endosulfan by estuarine animals. In F. L. Mayer, J. L. Hamelink (Eds.), Aquatic toxicology and hazard evaluation. Proceedings of the First Annual Symposium on Aquatic Toxicology (pp. 241–252). Philadelphia: American Society for Testing and Materials. doi:  https://doi.org/10.1520/STP32403S
  71. Schoenfeld. (2017). Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. Journal of Sports Science, 35, 1073–1082.  https://doi.org/10.1080/02640414.2016.1210197.CrossRefGoogle Scholar
  72. Statgraphics Plus Version 2.0 for Windows: user manual (1995). Rockville: Manigistics.Google Scholar
  73. Syversen, T., & Kaur, P. (2012). The toxicology of mercury and its compounds. Journal of Trace Elements in Medicine and Biology, 26, 215–226.  https://doi.org/10.1016/j.jtemb.2012.02.004.CrossRefGoogle Scholar
  74. Takeuchi, S., Matsuda, T., Kobayashi, S., Takahashi, T., & Kojima, H. (2006). In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR) alpha and PPAR gamma and quantitative analysis of in vivo induction pathway. Toxicology and Applied Pharmacology, 217, 235–244.  https://doi.org/10.1016/j.taap.2006.08.011.CrossRefGoogle Scholar
  75. Tanaka, H., Horiuchi, Y., & Konishi, K. (1975). Determination of surfactants by use of acid phosphatase. Analytical Biochemistry, 66, 489–497.  https://doi.org/10.1016/0003-2697(75)90616-8.CrossRefGoogle Scholar
  76. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 101, 133–164.  https://doi.org/10.1007/978-3-7643-8340-4_6.CrossRefGoogle Scholar
  77. Tsekova, K., & Galabova, D. (2003). Phosphatase production and activity in copper (II) accumulating Rizopus delemar. Enzyme and Microbial Technology, 33, 926–931.  https://doi.org/10.1016/j.enzmictec.2003.06.001.CrossRefGoogle Scholar
  78. Turpin-Nagel, K., & Vadas, T. M. (2016). Controls on metal exposure to aquatic organisms in urban streams. Environmental Science. Processes & Impacts, 18, 956–967.  https://doi.org/10.1039/c6em00151c.CrossRefGoogle Scholar
  79. Val, J., Muñiz, S., Gomà, J., & Navarro, E. (2016). Influence of global change-related impacts on the mercury toxicity of freshwater algal communities. Science of the Total Environment, 540, 53–62.  https://doi.org/10.1016/j.scitotenv.2015.05.042.CrossRefGoogle Scholar
  80. Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos.M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178–189.  https://doi.org/10.1016/j.ecoenv.2005.03.013.CrossRefGoogle Scholar
  81. Van Assche, F., & Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plant, Cell & Environment, 13, 195–206.  https://doi.org/10.1111/j.1365-3040.1990.tb01304.x.CrossRefGoogle Scholar
  82. Verma, S. R., Chand, R., & Tonk, I. P. (1985). Effects of environmental and biological variables on the toxicity of mercuric chloride. Water, Air, & Soil Pollution, 25, 243–248 0049-6979/85.15.CrossRefGoogle Scholar
  83. Vitoratos, A., Fois, C., Danias, P., & Likudis, Z. (2016). Investigation of the soil sorption of neutral and basic pesticides. Water, Air & Soil Pollution, 227, 397.  https://doi.org/10.1007/s11270-016-3076-8.CrossRefGoogle Scholar
  84. Winston, G. W., & Di Giulio, R. T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology, 19, 137–161.  https://doi.org/10.1016/0166-445X(91)90033-6.CrossRefGoogle Scholar
  85. Xie, J. J., Chen, Q. X., Zhang, J. P., Wang, Q., & Yang, X. M. (2006). Inhibitory kinetics of mercuric ion on the activity of beta-N-acetyl-D-glucosaminidase from green crab (Scylla serrata). International Journal of Biological Macromolecules, 39, 159–164.  https://doi.org/10.1016/j.ijbiomac.2005.10.006.CrossRefGoogle Scholar
  86. Yan, Y. F., Yang, J. Y., & Lin, J. Y. (2016). Enzyme activity and morphological change in the spleens of crucian carp in the Yongcheng coal mine subsidence area, China. Genetics and Molecular Research, 15(2).  https://doi.org/10.4238/gmr.15027782.
  87. Zatta, P., Lain, E., & Cagnolini, C. (2000). Effects of aluminum on the activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. European Journal of Biochemistry, 267, 3049–3055.  https://doi.org/10.1046/j.1432-1033.2000.01328.x.CrossRefGoogle Scholar
  88. Zhang, W., Gruszewski, H. A., Chevone, B. I., & Nessler, C. L. (2008). An arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiology, 146, 431–440.  https://doi.org/10.1104/pp.107.109934.CrossRefGoogle Scholar
  89. Zhang, X., Liu, H., Ju, L., & Liu, C. (2017). Exploring the effect of Cu2+ on sludge hydrolysis and interaction mechanism between Cu2+ and xylanase by multispectral and thermodynamic methods. Water Air, & Soil Pollution, 228, 99.  https://doi.org/10.1007/s11270-017-3252-5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Darlene D. Dantzger
    • 1
  • Miriam Dantzger
    • 1
  • Claudio M. Jonsson
    • 2
  • Hiroshi Aoyama
    • 1
    Email author
  1. 1.Departamento de Bioquímica e Biologia Tecidual, Laboratório de Enzimologia, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)Cidade Universitária, CampinasBrazil
  2. 2.Laboratório de Ecotoxicologia e BiossegurançaEMBRAPA Meio AmbienteJaguariúnaBrazil

Personalised recommendations