Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conventional as well as Emerging Arsenic Removal Technologies—a Critical Review


Arsenic poisoning from contaminated drinking water has evolved as one of the major health hazards in recent times. High concentrations of arsenic in water and soil have been found in many parts of the world. Developing countries like Taiwan, Chile, Argentina, Bangladesh, Nepal and Vietnam are most affected by the contamination of groundwater with arsenic. These countries also cannot afford expensive and large-scale treatments to remove arsenic from drinking waters to acceptable limits (10 ppb, as recommended by WHO and US EPA). The aim of this review is to summarize low-cost, effective conventional technologies currently described in the literature for arsenic removal that can be used in the third world and developing countries, compare them with the emerging technologies and discuss their advantages and disadvantages along with a brief analysis of arsenic chemistry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545.

  2. Ahmed, F.M. (2001). An overview of arsenic removal technologies in Bangladesh and India. In: M. Feroze Ahmed. et al. (Eds). Technologies for arsenic removal from drinking water. A compilation of papers presented at the International Workshop on Technologies for Arsenic Removal from Drinking Water. Bangladesh University of Engineering and Technology, Dhaka, Bangladesh and the United Nations University, Tokyo.

  3. Ahmed, M. F., & Rahaman, M. M. (2000). Water supply and sanitation—low income urban communities. Dhaka: International Training Network (ITN) Centre, BUET.

  4. AIIH. (2001). Arsenic mitigation programme for technology and park on arsenic removal devices. In B. B. Basu (Ed.), Convenor director. Kolkata: School of Fundamental Research.

  5. Alauddin, M., Hussam, A., Khan, A. H., Habibuddowla, M., Rasul, S. B., Munir, A. K. M. (2001). Critical evaluation of a simple arsenic removal method for groundwater of Bangladesh, in Arsenic exposure and health effects IV. 4th International Conference on Arsenic Exposure and Health Effects, 441–451, San Diego, Calif., USA.

  6. An, B., Steinwinder, T. R., & Zhao, D. (2005). Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Research, 39, 4993–5004.

  7. Andrianisa, H. A., Ito, A., Sasaki, A., Aizawa, J., & Umita, T. (2008). Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride. Water Research, 42(19), 4809–4817.

  8. Arai, Y., Elzinga, E. J., & Sparks, D. (2001). X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface. Journal of Colloid and Interface Science, 235, 80–88.

  9. Arsenic symptoms, diagnosis and treatment update Summer 2002, Internet Available: http://www.Summer02arsenic.htm

  10. Atzei, D., Ferri, T., Sadun, C., Sangiorgio, P., & Caminiti, R. (2001). Structural characterization of complexes between iminodiacetate blocked on styrene-divinylbenzene matrix (Chelex 100 resin) and Fe(III), Cr(III), and Zn(II) in solid phase by energy-dispersive X-ray diffraction. Journal of the American Chemical Society, 123, 2552–2558.

  11. Badruzzaman, M., Westerhoff, P., & Knappe, D. R. U. (2004). Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Research, 38(18), 4002–4012.

  12. Bagla, P., & Kaiser, J. (1996). India’s spreading health crisis draws global arsenic experts. Science, 274, 174–175.

  13. Bajpai, S., & Chaudhuri, M. (1999). Removal of arsenic from ground water by manganese dioxide-coated sand. Journal of Environmental Engineering, 125(8), 782–784.

  14. BAMWSP, DFID and WEB, Water Aid Bangladesh (2001). Rapid assessment of household level arsenic removal technologies, Phase-I and Phase-II, Dhaka, Final Report, WS Atkins International Limited.

  15. Baskan, M. B., & Pala, A. (2010). A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 254(1–3), 42–48.

  16. Battaglia-Brunet, F., Dictor, M. C., Garrido, F., et al. (2002). An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. Journal of Applied Microbiology, 93(4), 656–667.

  17. Bearak, D. (1998) New Bangladesh disaster: wells that pump poison. The New York Times.

  18. Bellack, E. (1971). Arsenic removal from potable water. Journal American Water Works Association, 63(7), 454.

  19. Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat environ. Science and Technology, 35(13), 2621–2626.

  20. Bhaumik, M., Maity, A., Srinivasu, V. V., & Onyango, M. S. (2011). Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. Journal of Hazardous Materials, 190, 381–390.

  21. Bissen, M., & Frimmel, F. H. (2003). Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochimica Hydrobiology, 31(2), 9–18.

  22. Bothe, J. V., & Brown, P. W. (1999). Arsenic immobilization by calcium arsenate formation. Environmental Science & Technology, 33(21), 3806–3811.

  23. Bringas, E., Saiz, J., & Ortiz, I. (2015). Removal of As(V) from groundwater using functionalized magnetic adsorbent materials: effects of competing ions. Separation and Purification Technology, 156, 699–707.

  24. Brömssen, M., Genesis of high arsenic groundwater in the Bengal Delta Plains, West-Bengal, Bangladesh, Thesis Report Series 1999:18, Division of L, Water Resources, Department of Civil, Environmental Engineering Royal Institute of Technology, Stockholm, Sweden.

  25. Buswell, A. M. (1943). War problems in analysis and treatment. Journal American Water Works Association, 35(10), 1303.

  26. Chanda, M., O’Driscoll, F. K., & Rempel, G. L. (1988). Ligand exchange sorption of arsenate and arsenite anions by chelating in ferric ion form; II. Iminodiacetic chelating resin Chelex 100. Reactive Polymers, 8, 85.

  27. Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.-C., & Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7), 3979–3986.

  28. Chatterjee, A., Das, D., & Chakraborti, D. (1993). A study of ground water contamination by arsenic in the residential area of Behala, Calcutta due to industrial pollution. Environmental Pollution, 80, 57–65.

  29. Chen, H. W., Frey, M. M., Clifford, D., McNeill, L. S., & Edwards, M. (1999). Arsenic treatment considerations. Journal American Water Works Association, 91(3), 74–85.

  30. Cheng, R. C., Liang, S., Wang, H. C., & Beuhler, M. D. (1994). Enhanced coagulation for arsenic removal. Journal American Water Works Association, 86(9), 79–90.

  31. Chiew, H., Sampson, M. L., Huch, S., Ken, S., & Bostick, B. C. (2009). Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended bios and filters. Environmental Science and Technology, 43(16), 6295–6300.

  32. Choong, T. S. Y., Chuah, T. G., Robiah, Y., Koay, F. L. G., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(1–3), 139–166.

  33. Chowdhury, U. K., Biswas, B. K., Chowdhury, T. R., Samanta, G., Mandal, B. K., Basu, G. C., Chanda, C. R., Lodh, D., Saha, K. C., Mukherjee, S. K., Roy, S., Kabir, S., Quamruzzman, Q., & Chakraborti, D. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives, 108, 393–397.

  34. Clifford, D. (1986). Removing dissolved inorganic contaminants from water. Environmental Science and Technology, 20, 1072–1080.

  35. Clifford, D. (1999). Ion exchange and inorganic adsorption. In A. Letterman (Ed.), Water quality and treatment. New York: American Water Works Association, McGraw Hill.

  36. Criscuoli, A., Majumdar, S., Figoli, A., et al. (2012). As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules. Journal of Hazardous Materials, 211-212, 281–287.

  37. Croal, L. R., Gralnick, J. A., Malasarn, D., & Dianne, K. N. (2004). The genetics of geochemisty. Annual Review of Genetics, 38(1), 175–202.

  38. Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89(4), 713–764.

  39. Dambies, L., Guibal, E., & Roze, A. (2000). Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 170(1), 19–31.

  40. Dambies, L., Vincent, T., Domard, A., & Guibal, E. (2001). Preparation of chitosan gel beads by ionotropic molybdate gelation. Biomacromolecules, 2(4), 1198–1205.

  41. Das, D., Chatterjee, A., Mandal, B. K., Samanta, G., Chakraborti, D., & Chanda, B. (1995). Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. The Analyst, 120, 917–924.

  42. Dhar, R. K., Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A. W., Ahmed, S. A., & Hadi, S. A. (1997). Groundwater arsenic calamity in Bangladesh. Current Science, 73(1), 48–59.

  43. Dodd, M. C., Vu, N. D., Ammann, A., et al. (2006). Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment. Environmental Science and Technology, 40(10), 3285–3292.

  44. Draget, K. I., Varum, K. J., Moen, E., Gynnild, H., & Smidsrod, O. (1992). Chitosan cross-linked with Mo(VI) polyoxyanions: a new gelling system. Biomaterials, 13(9), 635.

  45. Driehaus, W., Jekel, M., & Hildebrandt, U. (1998). Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. Journal of Water Supply: Research and Technology, 47(1), 30–35.

  46. Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270–275.

  47. EAWAG 1999 SODIS. Access Date January, 2000.

  48. Edwards, M. (1994). Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. Journal American Water Works Association, 86(9), 64–78.

  49. Edwards, M., Patel, S., McNeill, L., Chen, H. W., Frey, M., Eaton, A. D., Antweiler, R. C., & Taylor, H. E. (1998). Considerations in arsenic analysis and speciation. Journal American Water Works Association, 90(3), 103–113.

  50. Elizalde-Gonzalez, M. P., Mattusch, J., Wennrich, R., & Morgenstern, P. (2001). Sorption on natural solids for arsenic removal. Chemical Engineering Journal, 81, 187–195.

  51. Emett, M. T., & Khoe, G. H. (2001). Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Research, 35(3), 649–656.

  52. Environmental Protection Agency (2001). Arsenic in drinking water: health effects research. Available:

  53. EPA. (2000). Arsenic removal from drinking water by ion exchange and activated alumina plants (EPA/600/R-00/088). Cincinnati: Office of Research and Development.

  54. Fendorf, S. E., Matthew, J. E., Grossel, P., & Sparks, D. L. (1997). Arsenate and chromate retention mechanism on goethite. 1. Surface structure. Environmental Science and Technology, 31, 315–320.

  55. Ferguson, J. F., & Gavis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6(11), 1259–1274.

  56. Ficklin, W. H. (1983). Separation of As(III) and As(V) in ground waters by ion exchange. Talanta, 30(5), 371.

  57. Fierro, V., Muñiz, G., Gonzalez-Sánchez, G., Ballinas, M. L., & Celzard, A. (2009). Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 168, 430–437.

  58. Fox, K. R. (1989). Field experience with point-of-use treatment systems for arsenic removal. Journal American Water Works Association, 81(2), 94–101.

  59. Francesconi, K. A., & Kuehnelt, D. (2002). Arsenic compounds in the environment. In W. T. Frankenberger Jr. (Ed.), Environmental chemistry of arsenic (p. 56). New York: Marcel Dekker, Inc..

  60. Fryxell, G. E., Liu, J., Hauser, T. A., Nie, Z., Ferris, K. F., Mattigod, S., Gong, M., & Hallen, R. T. (1999). Design and synthesis of selective mesoporous anion traps. Chemical Materials, 11, 2148–2154.

  61. Gallagher, P. A., Schewegel, C. A., Wei, X., & Creed, J. T. (2001). Speciation and preservation of inorganic arsenic in drinking water sources using EDTA with IC separation and ICP-MS detection. Journal of Environmental Monitoring, 3, 371–376.

  62. Gallard, H., & Gunten, U. V. (2002). Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research, 36(1), 65–74.

  63. Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Hobza, P., Zboril, R., & Kim, K. S. (2012). Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical Reviews, 112, 6156–6214.

  64. Ghurye, G., Clifford, D. (2000). Laboratory study on the oxidation of As(III) to As(V). Proceedings, AWWA Water Quality Technology Conference.

  65. Ghurye, G., & Clifford, D. (2004). As(III) oxidation using chemical and solid-phase oxidants. Journal. American Water Works Association, 96(1), 84–96.

  66. Ghurye, G., Clifford, D., & Tripp, A. (1999). Combined arsenic and nitrate removal by ion exchange. Journal American Water Works Association, 91(10), 85–96.

  67. Giles, D. E., Mohapatra, M., Issa, T. B., Anand, S., & Singh, P. (2011). Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management, 92(12), 3011–3022.

  68. Gomez-Pastora, J., Bringas, E., & Ortiz, I. (2014). Recent progress and future challenges on the use of high performance magnetic nanoadsorbents in environmental applications. Chemical Engineering Journal, 256, 187–204.

  69. Grafe, M., Eick, M. J., & Grossl, P. R. (2001). Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal, 65(6), 1680–1687.

  70. Guan, X. H., Wang, J., & Chusuei, C. C. (2008). Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. Journal of Hazardous Materials, 156(1–3), 178–185.

  71. Guenegou, T., Tambute, A., Jardy, A., & Caude, M. (1998). Elimination of arsenic traces contained in liquid effluents by chromatographic treatment. Analusis, 26, 352–357.

  72. Gupta, S. K., & Chen, K. Y. (1978). Arsenic removal by adsorption. Journal Water Pollution Control Federation, Johnston and Heijnen, 50, 493–506.

  73. Haron, M. J., Yunus, M. Z. W., Sukari, M. A., Wum, L. T., & Tokugana, S. (1997). Removal of arsenic(V) by cerium(III) complexed chelating ion exchanger. The Malaysian Journal of Analytical Sciences, 3(1), 193.

  74. Haron, M. J., Wan Yunus, W. M., Yong, N. L., & Tokunaga, S. (1999). Sorption of arsenate and arsenite anions by iron(III)-poly(hydroxamic acid) complex. Chemosphere, 39(14), 2459–2466.

  75. Harvard University. The arsenic project website.

  76. Heijnen, H. (2003). Criteria for selection of technologies for arsenic mitigation. In Arsenic contamination: Bangladesh perspective (pp. 429–441). Dhaka: ITN.

  77. Helfferich, F. G. (1961). Ligand exchange: a novel separation technique. Nature, 189, 1001–1002.

  78. Helfferich, F. G. (1962). Ion exchange. London and New York: McGraw-Hill Book Company.

  79. Hering, J. G., Chen, P. Y., Wilkie, J. A., Elimelech, M., & Liang, S. (1996). Arsenic removal by ferric chloride. Journal. American Water Works Association, 88(4), 155–167.

  80. Hering, J. G., Chen, P., Wilkie, J. A., & Elimelech, M. (1997). Arsenic removal from drinking water during coagulation. Journal of Environmental Engineering, ASCE, 123(8), 800–807.

  81. Himeno, S., Hashimoto, M., & Ueda, T. (1999). Formation and conversion of molybdophosphate and arsenate complexes in aqueous solution. Inorganica Chimica Acta, 284, 237–245.

  82. Hu, C., Liu, H., Chen, G., & Qu, J. (2012). Effect of aluminum speciation on arsenic removal during coagulation process. Separation and Purification Technology, 86, 35–40.

  83. Hussam, A., & Munir, A. K. M. (2007). A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. Journal of Environmental Science and Health A Toxic/Hazardous Substances and Environmental Engineering, 42(12), 1869–1878.

  84. Inskeep, W. P. (2002). Arsenic(V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In W. T. Frankenberger Jr. (Ed.), Environmental chemistry of arsenic (p. 183). New York: Marcel Dekker, Inc.

  85. Irving, H. M. N. H., Williams, R. J. P. (1953). The stability of transition-metal complexes. Journal of the Chemical Society. 3192–3210.

  86. Jain, C. K., & Singh, R. D. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107, 1–18.

  87. Jekel, M. R. (1994). Removal of arsenic in drinking water treatment. In J. O. Nriagu (Ed.), Arsenic in the environment. Part 1: cycling and characterization (pp. 119–130). New York: Wiley.

  88. Jekel, M., & Seith, R. (2000). Comparison of conventional and new techniques for the removal of arsenic in a full scale water treatment plant. Water Supply, 18, 628–631.

  89. Joshi, A., & Chaudhury, M. (1996). Removal of arsenic from groundwater by iron-oxide-coated sand. ASCE Journal of Environmental Engineering, 122(8), 769–771.

  90. Jubinka, L., & Rajakovic, V. (1992). The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Separation Science and Technology, 27(11), 1423–1433.

  91. Kanematsu, M., Young, T. M., Fukushi, K., Green, P. G., & Darby, J. L. (2013). Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochimica et Cosmochimica Acta, 106, 404–428.

  92. Kanesato, H., Yokoyamo, T., & Suzuki, T. M. (1988). Selective sorption of fluoride ion by La(III)-loaded chelating resin having phosphonomethylamino groups. Chemistry Letters, 2(2), 207–210.

  93. Karcher, S., Caceres, L., Jekel, M., & Contreras, R. (1999). Arsenic removal from water supplies in Northern Chile using ferric chloride coagulation. Journal of the Chartered Institution of Water and Environmental Management, 13(3), 164–169.

  94. Kartinen Jr., E. O., & Martin, C. J. (1995). An overview of arsenic removal processes. Desalination, 103(1–2), 79–88.

  95. Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from ground waters. Water Research, 38(1), 17–26.

  96. Katsoyiannis, I., Zouboulis, A., Althoff, H., & Bartel, H. (2002). As(III) removal from ground waters using fixed-bed up flow bioreactors. Chemosphere, 47(3), 325–332.

  97. Katsoyiannis, I. A., Zouboulis, A. I., & Jekel, M. (2004). Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Industrial and Engineering Chemistry Research, 43(2), 486–493.

  98. Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science and Technology, 42(19), 7424–7430.

  99. Kemp, K. C., Seema, H., Saleh, M., Le, N. H., Mahesh, K., Chandra, V., & Kim, K. S. (2013). Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 5, 3149–3171.

  100. Kepner, B., Spotts, J., Mintz, E., Cortopassi, E., Abrahams, P., Gray, C., Matur, S. (1998). Removal of arsenic from drinking water with enhanced hybrid aluminas and composite metal oxide particles. Presentation at the Feb. 1998 International Conference on Arsenic Pollution of Groundwater: Causes, Effects, Remedies, Dhaka Community Hospital, Dhaka, Bangladesh.

  101. Khair, A. (2000). Factors responsible for the presence of arsenic in groundwater: Bangladesh context. In M. F. Ahmed (Ed.), Bangladesh environment—2000 (pp. 198–209). Bangladesh: Poribesh Andolon.

  102. Khan, A. H., Rasul, S. B., Munir, A., Habibuddowla, M., Alauddin, M., Newaz, S. S., & Hussan, A. (2000). Appraisal of a simple arsenic removal method for groundwater of Bangladesh. Journal of Environmental Science and Health, 35(7), 1021–1041.

  103. Kim, M. J., & Nriagu, J. (2000). Oxidation of arsenite in groundwater using ozone and oxygen. Science of the Total Environment, 247(1), 71–79.

  104. Klas, S., & Kirk, D. W. (2013). Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. Journal of Hazardous Materials, 252-253, 77–82.

  105. Korngold, E., Belayev, N., & Aronov, L. (2001). Removal of arsenic from drinking water by anion exchangers. Desalination, 141, 81–84.

  106. Kunzru, S., & Chaudhuri, M. (2005). Manganese amended activated alumina for adsorption/oxidation of arsenic. Journal of Environmental Engineering, 131(9), 1350–1353.

  107. Kuriakose, S., Singh, T. S., & Pant, K. K. (2004). Adsorption of As(III) from aqueous solution onto iron oxide impregnated activated alumina. Water Quality Research Journal of Canada, 39(3), 258–266.

  108. Lacasa, E., Cãnizares, P., Sáez, C., Fernández, F. J., & Rodrigo, M. A. (2011). Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Separation and Purification Technology, 79(1), 15–19.

  109. Lakshmanan, D., Clifford, D. A., & Samanta, G. (2010). Comparative study of arsenic removal by iron using electro coagulation and chemical coagulation. Water Research, 44(19), 5641–5652.

  110. Laverman, A. M., Blum, J. S., Schaefer, J. K., Phillips, E. J. P., Lovley, D. R., & Oremland, R. S. (1995). Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology, 61(10), 3556–3561.

  111. Lee, Y., Um, I. H., & Yoon, J. (2003). Arsenic (III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation. Environmental Science and Technology, 37(24), 5750–5756.

  112. Lepkowski, W. (1998). Arsenic crisis in Bangladesh. C&EN News, November 16, 27–29.

  113. Letterman, A. (Ed.). (1999). Water quality and treatment: a handbook of community water supplies. McGraw-Hill, New York: American Water Works Association.

  114. Leupin, O. X., & Hug, S. J. (2005). Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 39(9), 1729–1740.

  115. Li, Z., Jean, J. S., Jiang, W. T., Chang, P. H., Chen, C. J., & Liao, L. (2011). Removal of arsenic from water using Fe-exchanged natural zeolite. Journal of Hazardous Materials, 187, 318–323.

  116. Lin, T. F., & Wu, J. K. (2001). Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Research, 35(8), 2049–2057.

  117. Lorenzen, L., Van Deventer, J. S. J., & Landi, W. M. (1995). Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Minerals Engineering, 8(4–5), 557–569.

  118. Luo, X., Wang, C., Luo, S., Dong, R., Tu, X., & Zeng, G. (2012). Chemical Engineering Journal, 187, 45.

  119. Ma, L., Islam, S. M., Liu, H., Zhao, J., Sun, G., Li, H., Ma, S., & Kanatzidis, M. G. (2017). Selective and efficient removal of toxic oxoanions of As(III), As(V), and Cr(VI) by layered double hydroxide intercalated with MoS4 2−. Chemistry of Materials, 29, 3274–3284.

  120. Macy, J. M., Santini, J. M., Pauling, B. V., O’Neill, A. H., & Sly, L. I. (2000). Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Archives of Microbiology, 173(1), 49–57.

  121. Manning, B. A., & Goldberg, S. (1996). Modelling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60(1), 121–131.

  122. Manning, A. B., Fendorf, E. S., Bostick, B., & Suarez, L. D. (2002). Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environmental Science and Technology, 36(5), 976–981.

  123. Masscheleyn, P. H., Delaune, R. D., & Patrick Jr., W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25(8), 1414–1419.

  124. Matsunaga, H., Yokoyama, T., Eldridge, R. J., & Bolto, B. A. (1996). Adsorption characteristics of As(III) and As(V) on iron(III) -loaded chelating resin having lysine-Nα, Nα-diacetic acid moiety. Reactive and Functional Polymers, 29, 167.

  125. Mazumder, G., et al. (1998). International Journal of Epidemiology, 27, 871.

  126. McNeill, L. S., & Edwards, M. (1995). Soluble arsenic removal at water treatment plants. Journal American Water Works Association, 87(4), 105–113.

  127. Miller, S. M., & Zimmerman, J. B. (2010). Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Research, 44(19), 5722–5729.

  128. Miller, S. M., Spaulding, M. L., & Zimmerman, J. B. (2011). Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Research, 45(17), 5745–5754.

  129. Min, J. H., & Hering, J. G. (1999). Arsenic sorption by Fe(III)-doped alginate gels. Water Research, 32(5), 1544–1552.

  130. Mohan, D., & Pittman Jr., C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

  131. Mohanty, D., & Samal, S. (2009). Selective removal of toxic metals like copper and arsenic from drinking water by using phenol-formaldehyde type chelating resins. E-Journal of Chemistry, 6(4), 1035–1046.

  132. Mohanty, D., Acharya, S., & Samal, S. (2013). Selective removal of toxic and heavy metal ions like arsenic and copper from drinking water by using novel chelating resins immobilized on silica gel. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(1), 43–58.

  133. Mok, W. M., & Wai, C. M. (1994). In J. O. Nriagu (Ed.), Mobilization of arsenic in contaminated river water in arsenic in the environment. New York: John Wiley & Sons Inc.

  134. Molnar, L., Vircikova, E., & Lech, P. (1994). Experimental study of As(III) oxidation by hydrogen peroxide. Hydrometallurgy, 35, 1–7.

  135. Murcott, S. (2000). A comprehensive review of low-cost, well-water treatment technologies for arsenic removal.,/murcott2.html.

  136. Neumann, A., Kaegi, R., Voegelin, A., Hussam, A., Munir, A. K. M., & Hug, S. J. (2013). Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environmental Science and Technology, 47(9), 4544–4554.

  137. Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning in Bangladesh groundwater. Nature, 395, 338.

  138. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413.

  139. Nieminski, E., & Evans, D. (1995). Pilot testing of trace metals removal with ozone at Snowbird Ski Resort. Ozone Science Engineering, 17(3), 297–309.

  140. Nieto-Delgado, C., & Rangel-Mendez, J. R. (2012). Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water. Water Research, 46, 2973–2982.

  141. Nikolaidis, N.P., Lackovic, J. (1998). Arsenic Remediation Technology-AsRT, presented at International Conference on Arsenic Pollution of Ground Water in Bangladesh: Causes, Effect and Remedies, Dhaka, 8–12 February.

  142. Oh, J. I., Yamamoto, K. K., Kitawaki, H., Nakao, S., Sugawara, T., Rahaman, M. M., & Rahaman, M. H. (2000). Application of low-pressure nanofiltration coupled with a bicycle pump for the treatment of arsenic-contaminated groundwater. Desalination, 132, 307–314.

  143. Oremland, R. S., & Stolz, J. F. (2005). Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13(2), 45–49.

  144. Oremland, R. S., Saltikov, C. W., Wolfe-Simon, F., & Stolz, J. F. (2009). Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiology Journal, 26(7), 522–536.

  145. Pallier, V., Feuillade-Cathalifaud, G., Serpaud, B., & Bollinger, J. C. (2010). Effect of organic matter on arsenic removal during coagulation/flocculation treatment. Journal of Colloid and Interface Science, 342(1), 26–32.

  146. Pattanayak, J., Mondal, K., Mathew, S., & Lalvani, S. B. (2000). A parametric evaluation of the removal of as(V) and as(III) by carbon-based adsorbents. Carbon, 38, 589–596.

  147. Penke, Y. K., Anantharaman, G., Ramkumar, J., & Kar, K. K. (2017). Aluminum substituted cobalt ferrite (Co−Al−Fe) nano adsorbent for arsenic adsorption in aqueous systems and detailed redox behavior study with XPS. Applied Materials & Interfaces, 9, 11587–11598.

  148. Petala, E., Georgiou, Y., Kostas, V., Dimos, K., Karakassides, M. A., Deligiannakis, Y., Aparicio, C., Tuček, J., & Zbořil, R. (2017). Magnetic carbon nanocages: an advanced architecture with surface- and morphology-enhanced removal capacity for arsenites. Sustainable Chemistry & Engineering, 5, 5782–5792.

  149. Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Resources, 16, 1247–1253.

  150. Pontius, F. W. (Ed.). (1990). Water quality treatment: a handbook of community water supplies. McGraw-Hill, New York: American Water Works Association.

  151. Rajakovic, V., & Mitrovicm, M. (1992). Arsenic removal from water by chemisorption filters. Environmental Pollution, 75(3), 279–287.

  152. Ramana, A., & Sengupta, A. (1992). Removing selenium(IV) and arsenic(V) oxyanions with tailored chelating polymers. Journal of Environmental Engineering, 118(5), 755–775.

  153. Ramaswami, A., Tawachsupa, S., & Isleyen, M. (2001). Batch-mixed iron treatment of high arsenic waters. Water Research, 35(18), 4474–4479.

  154. Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32(3), 344–349.

  155. Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: a global synthesis. West Sussex: Wiley.

  156. Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science Technology, 36, 2889–2896.

  157. Rosenblum, E., & Clifford, D. (1984). The equilibrium capacity of activated alumina. EPA-600/S2-83-107. Washington: USEPA.

  158. Rubel, F. J., & Woosely, R. D. (1979). The removal of fluoride from drinking water by activated alumina. Journal American Water Works Association, 71(1), 45–48.

  159. Sahu, T. K., Arora, S., Banik, A., Iye, R. P. K., & Qureshi, M. (2017). Efficient and rapid removal of environmental malignant arsenic(III) and industrial dyes using reusable, recoverable ternary iron oxide—ORMOSIL—reduced graphene oxide composite. Sustainable Chemistry & Engineering, 5, 5912–5921.

  160. Saiz, J., Bringas, E., & Ortiz, I. (2014). New functionalized magnetic materials for As5+ removal: adsorbent regeneration and reuse. Industrial and Engineering Chemistry Research, 53, 18928–18934.

  161. Santini, J. M., Sly, L. I., Schnagl, R. D., & Macy, J. M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology, 66(1), 92–97.

  162. Sarkar, S., Greenleaf, J. E., Gupta, A., et al. (2010). Evolution of community-based arsenic removal systems in remote villages in West Bengal, India: assessment of decade-long operation. Water Research, 44(19), 5813–5822.

  163. Shen, Y. S. (1973). Study of arsenic removal from drinking water. Journal American Water Works Association, 65(8), 543–548.

  164. Shen, W. J., Mu, Y., Xiao, T., & Ai, Z. H. (2016). Magnetic Fe3O4-FeS nanocomposites with promoted Cr(VI) removal performance. Chemical Engineering Journal, 285, 57–68.

  165. Singh, T. S., & Pant, K. K. (2004). Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technology, 36(2), 139–147.

  166. Smedley, P. L., & Kinniburg, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

  167. Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydro geochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.

  168. Song, S., Valdivieso, A. L., Campos, D. J. H., Peng, C., Fernandez, M. G. M., & Soto, I. R. (2006). Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Research, 40(2), 364–372.

  169. Sorg, T. J., & Logsdon, G. S. (1978). Treatment technology to meet the interim primary drinking water regulations for inorganic: part 2. Journal of the American Water Works Association, 70(7), 379–393.

  170. Su, C., & Puls, W. R. (2001). Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environmental Science & Technology, 35, 1487–1492.

  171. Suzuki, T. M., Tanco, M. L., Tanaka, D. A. P., Matsugana, H., & Yokoyama, T. (2001). Adsorption characteristics and removal of oxy-anions or arsenic and selenium on the porous polymers loaded with monoclinic hydrous zirconium oxide. Separation Science and Technology, 36(1), 103–111.

  172. Tang, S. C. N., & Lo, I. M. C. (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Research, 47, 2613–2632.

  173. Thirunavukkarasu, O. S., Viraraghavan, T., Subramanian, K. S., & Tanjore, S. (2002). Organic arsenic removal from drinking water. Urban Water, 4, 415–421.

  174. Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using granular ferric hydroxide. Water SA, 29(2), 161–170.

  175. Tokunaga, S., Wasay, S. A., & Park, S. W. (1997). Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds. Water Science Technology, 35(7), 71–78.

  176. Tripathy, S. S., & Raichur, A. M. (2008). Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water. Chemical Engineering Journal, 138(1–3), 179–186.

  177. Trung, D. Q., Anh, C. H., Trung, N. X., Yasaka, Y., Fujita, M., & Tanaka, M. (2001). Preconcentration of arsenic species in environmental waters by solid phase extraction using metal-loaded chelating resins. Analytical Sciences, 17, 1219–1222.

  178. Trussell, R. R., Trussell, A., & Kreft, P. (1980). Selenium removal from groundwater using activated alumina. 600/2-80-153. Cincinnati: USEPA.

  179. United Nations Foundation. Arsenic poisoning in Bangladesh, West Bengal, a U.N. Foundation Report, 1999.

  180. Vadahanambi, S., Lee, S. H., Kim, W. J., & Oh, I. K. (2013). Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environmental Science & Technology, 47, 10510–10517.

  181. Viraraghavan, T., Subramanian, K. S., & Aruldoss, J. A. (1999). Arsenic in drinking water—problems and solutions. Water Science and Technology, 40(2), 69–76.

  182. Vu, K. B., Kaminski, M. D., & Nuñez, L. (2003.) Review of arsenic removal technologies for contaminated groundwaters.

  183. Waypa, J. J., Elimelech, M., & Hering, J. G. (1997). Arsenic removal by RO and NF membranes. Journal American Water Works Association, 89(10), 102–116.

  184. Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 107, 97–110.

  185. World Health Organization (2001). Arsenic in drinking water. Available:

  186. Yamani, J. S., Miller, S. M., Spaulding, M. L., & Zimmerman, J. B. (2012). Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Research, 46(14), 4427–4434.

  187. Yoshida, I., Ueno, K., & Kobayashi, H. (1978). Selective separation of As(III) and As(V) ions with iron(III) complex of chelating ion exchange resin. Separation Science and Technology, 13(2), 173.

  188. Yoshida, I., Nishimura, M., Matsuo, K., & Uno, K. (1983). Studies on selective adsorption of anion by metal-ion loaded ion exchange resin V. Adsorption of phosphate ion on ion exchange resin loaded with zirconium(IV), IRC 50-Zr(IV). Separation Science and Technology, 18(1), 73–82.

  189. Yuan, P., Liu, D., Fan, M. D., Yang, D., Zhu, R. L., Ge, F., & Zhu, J. X. (2010). He, H. P. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials, 173, 614–621.

  190. Zhang, K., Dwivedi, V., Chi, C., & Wu, J. (2010). Journal of Hazardous Materials, 182, 162.

  191. Zhao, D., & SenGupta, A. K. (1998). Ultimate removal and recovery of phosphate from wastewater using a new class of polymeric exchangers. Water Research, 32(5), 1613–1625.

  192. Zhu, X., & Jyo, A. (2001). Removal of As(V) by zirconium-(IV) loaded phosphoric acid chelating resin. Separation Science and Technology, 36(14), 3175–3189.

  193. Zhu, J., Sadu, R., Wei, S., Chen, D. H., Haldolaarachchige, N., Luo, Z., Gomes, J. A., Young, D., & Guoa, Z. (2012). ECS Journal of Solid State Science and Technology, 1, M1.

  194. Zhu, J., Pigna, M., Cozzolino, V., Caporale, A. G., & Violante, A. (2013). Higher sorption of arsenate versus arsenite on amorphous Al-oxide, effect of ligands. Environmental Chemistry Letters, 11(3), 289–294.

  195. Zouboulis, A. I., & Katsoyiannis, I. A. (2002). Arsenic removal using iron oxide loaded alginate beads. Industrial & Engineering Chemistry Research, 41(24), 6149–6155.

Download references


The author highly acknowledges faculty members of the Department of Chemistry and the Principal, Dhenkanal (Auto) College for their constant encouragement for pursuing the work.

Author information

Correspondence to Debasis Mohanty.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interests.

Additional information


• The chemistry of arsenic in the environment is discussed.

• The source and effect of arsenic in the groundwater are studied.

• The conventional, modern, hybrid and new emerging technologies used for removal of arsenic are critically reviewed.

• The advantages and disadvantages of these technologies are also elaborately discussed.

• Some new innovative technologies like polymeric ligand exchanger and biological arsenic removal technologies are evaluated for their effectiveness.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohanty, D. Conventional as well as Emerging Arsenic Removal Technologies—a Critical Review. Water Air Soil Pollut 228, 381 (2017).

Download citation


  • Arsenate adsorption
  • Arsenic removal
  • Separation of arsenic
  • Coagulation
  • Adsorption
  • Ion exchange
  • Polymeric ligand exchanger