Water, Air, & Soil Pollution

, 228:352 | Cite as

Washout of Fine Sand Particles From a Ceramic Tile Roof: Laboratory Experiments Under Simulated Rainfall

  • Alexandre Silveira
  • João L. M. P. de Lima
  • João R. C. B. Abrantes
  • Babar Mujtaba


Roof runoff is an important source of urban stormwater and a main source of rainwater harvesting. Deposition of pollutants on rooftops can have a negative impact on runoff quality and, therefore, on harvested rainwater. Laboratory experiments with simulated rainfall were performed in order to study the washout of fine sand particles deposited on a ceramic tile roof, by runoff, considering the effect of the particle position, particle areal load, particle connectivity and roof slope. Results indicated that particle washout was influenced by the particle position on the roof; particle transport peak and transported mass was higher for the particle mass positions closer to the outlet. Increase in particle areal load decreased particle transport whereas particle connectivity had no effect on particle transport. However, roof slope was a dominant aspect in the particle washout; increase in roof slope greatly increased particle transport peak and transported mass. It also remarkably increased the first flush effect.


Roof runoff Particle washout Ceramic tile roof Laboratory study 



The first author acknowledges CNPq, Brazil, for the financial support through the Post-Doctoral Grant 206872/2014-3. Acknowledgements are due to FCT, Portugal, for the financial support through the Project HIRT (PTDC/ECM-HID/4259/2014–POCI-01-0145-FEDER-016668) coordinated by the second author and the Doctoral Grant SFRH/BD/103300/2014 of the third author.


  1. Barlow, C., Bendell, L. I., Duckham, C., Faugeroux, D., & Koo, V. (2014). Three-dimensional profiling reveals trace metal depositional patterns in sediments of urban aquatic environments: a case study in Vancouver, British Columbia, Canada. Water, Air, and Soil Pollution, 225, 1856.CrossRefGoogle Scholar
  2. Carvalho, S. C. P., de Lima, J. L. M. P., & de Lima, M. I. P. (2014). Using meshes to change the characteristics of simulated rainfall produced by spray nozzles. International Soil and Water Conservation Research, 2(2), 67–78.CrossRefGoogle Scholar
  3. Chang, M., McBroom, M. W., & Scott Beasley, R. (2004). Roofing as a source of nonpoint water pollution. Journal of Environmental Management, 73(4), 307–315.CrossRefGoogle Scholar
  4. Christiansen, J. E. (1942). Irrigation by sprinkling. California Agricultural Experiment Station Bulletin 670. Berkeley: University of California.Google Scholar
  5. de Lima, J. L. M. P., Carvalho, S. C. P., & de Lima, M. I. P. (2013). Rainfall simulator experiments on the importance of when rainfall burst occurs during storm events on runoff and soil loss. Zeitschrift für Geomorphologie, 57(1), 91–109.CrossRefGoogle Scholar
  6. Dong, A., Chesters, G., & Simsiman, G. V. (1984). Metal composition of soil, sediments, and urban dust and dirt samples from the Menomonee River watershed, Wisconsin, U.S.A. Water, Air, and Soil Pollution, 22(3), 257–275.CrossRefGoogle Scholar
  7. Egodawatta, P., Thomas, E., & Goonetilleke, A. (2009). Understanding the physical processes of pollutant build-up and wash-off on roof surfaces. Science of the Total Environment, 407(6), 1834–1841.CrossRefGoogle Scholar
  8. ETA 0701. (2012). Sistemas de Aproveitamento de Águas Pluviais em Edifícios. Lisbon: Associação Nacional para a Qualidade nas Instalações Prediais.Google Scholar
  9. Farreny, R., Morales-Pinzón, T., Guisasola, A., Tayà, C., Rieradevall, J., & Gabarrell, X. (2011). Roof selection for rainwater harvesting: quantity and quality assessments in Spain. Water Research, 45(10), 3245–3254.CrossRefGoogle Scholar
  10. Galfi, H., Österlund, H., Marsalek, J., & Viklander, M. (2017). Mineral and anthropogenic indicator inorganics in urban stormwater and snowmelt runoff: sources and mobility patterns. Water, Air, and dSoil Pollution, 228, 263.CrossRefGoogle Scholar
  11. Geiger, W. (1987). Flushing effects in combined sewer systems. Proceedings of the 4th International Conference on Urban Drainage, Lausanne, Switzerland.Google Scholar
  12. Ghani, A. A., Zakaria, N. A., Kassim, M., & Nasir, B. B. (2000). Sediment size characteristics of urban drains in Malaysian cities. Urban Water, 2(4), 335–341.CrossRefGoogle Scholar
  13. Gromaire, M. C., Garnaud, S., Saad, M., & Chebbo, G. (2001). Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Research, 35(2), 521–533.CrossRefGoogle Scholar
  14. Heal, K. V., Hepburn, D. A., & Lunn, R. J. (2006). Sediment management in sustainable urban drainage system ponds. Water Science and Technology, 53(10), 219–227.CrossRefGoogle Scholar
  15. Huston, R., Chan, Y. C., Gardner, T., Shaw, G., & Chapman, H. (2009). Characterization of atmospheric deposition as a source of contaminants in urban rainwater tanks. Water Research, 43(6), 1630–1640.CrossRefGoogle Scholar
  16. Isidoro, J. M. G. P., & de Lima, J. L. M. P. (2015). Hydraulic system to ensure constant rainfall intensity (over time) when using nozzle rainfall simulators. Hydrology Research, 46(5), 705–710.CrossRefGoogle Scholar
  17. Lee, J. Y., Yang, J. S., Han, M., & Choi, J. (2010). Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Science of the Total Environment, 408(4), 896–905.CrossRefGoogle Scholar
  18. Leusbrock, I., Nanninga, T. A., Lieberg, K., Agudelo-Vera, C. M., Keesman, K. J., Zeeman, G., & Rijnaarts, H. H. M. (2015). The urban harvest approach as framework and planning tool for improved water and resource cycles. Water Science and Technology, 72(6), 998–1006.CrossRefGoogle Scholar
  19. Li, C., Liu, M., Hu, Y., Gong, J., Sun, F., & Xu, Y. (2014). Characterization and first flush analysis in road and roof runoff in Shenyang, China. Water Science and Technology, 70(3), 397–406.CrossRefGoogle Scholar
  20. Lye, D. J. (2009). Rooftop runoff as a source of contamination: a review. Science of the Total Environment, 407(21), 5429–5434.CrossRefGoogle Scholar
  21. Ma, J. S, Khan, S., Li, Y., Kim, L. H., Ha, S., & Lau, S. L. (2002). First flush phenomena for highways: how it can be meaningfully defined. Proceedings of the 9th International Conference on Urban Drainage. Portland, OR, USA.Google Scholar
  22. Magyar, M. I., Mitchell, V. G., Ladson, A. R., & Diaper, C. (2007). An investigation of rainwater tanks quality and sediment dynamics. Water Science and Technology, 56(9), 21–28.CrossRefGoogle Scholar
  23. Montenegro, A. A. A., Abrantes, J. R. C. B., de Lima, J. L. M. P., Singh, V. P., & Santos, T. E. M. (2013). Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena, 109, 139–149.CrossRefGoogle Scholar
  24. Moojong, P., Hwandon, J., & Minchul, S. (2008). Estimation of sediments in urban drainage areas and relation analysis between sediments and inundation risk using GIS. Water Science and Technology, 58(4), 811–817.CrossRefGoogle Scholar
  25. Murakami, M., Nakajima, F., & Furumai, H. (2004). Modelling of runoff behaviour of particle-bound polycyclic aromatic hydrocarbons (PAHs) from roads and roofs. Water Research, 38(20), 4475–4483.CrossRefGoogle Scholar
  26. NBR 15227. (2007). Água de Chuva: Aproveitamento de Coberturas em Áreas Urbanas para Fins Não Potáveis. São Paulo, SP, Brazil.Google Scholar
  27. Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M., Black, T., Basart, S., Nickovic, S., Miller, R. L., Perlwitz, J. P., Schulz, M., & Thomson, M. (2011). Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model—part 1: model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001–13027.CrossRefGoogle Scholar
  28. Pinedo, S., Jordana, E., Flagella, M. M., & Ballesteros, E. (2014). Relationships between heavy metals contamination in shallow marine sediments with industrial and urban development in Catalonia (Northwestern Mediterranean Sea). Water, Air, and Soil Pollution, 225, 2084.CrossRefGoogle Scholar
  29. Rocher, V., Azimi, S., Gasperi, J., Beuvin, L., Muller, M., Moilleron, R., & Chebbo, G. (2004). Hydrocarbons and metals in atmospheric deposition and roof runoff in central Paris. Water, Air & Soil Pollution, 159(1), 67–86.CrossRefGoogle Scholar
  30. Sansalone, J. J., & Buchberger, S. G. (1997). Partitioning and first flush of metals in urban roadway storm water. Journal of Environmental Engineering, 123(2), 134–143.CrossRefGoogle Scholar
  31. Shen, J. (1965). Use of analog models in the analysis of flood runoff. In Geological Survey Professional Paper 506-A. Washington, D.C.: United States Government Printing Office.Google Scholar
  32. Silveira, A., Abrantes, J. R. C. B., de Lima, J. L. M. P., & Lira, L. C. (2016). Modelling runoff on ceramic tile roofs using the kinematic wave equations. Water Science and Technology, 73(8), 2824–2831.CrossRefGoogle Scholar
  33. Silveira, A., de Lima, J. L. M. P., Dinis, C., Abrantes, J. R. C. B. (2017). Chuva de baixa intensidade em telhados cerâmicos pode não gerar escoamento suficiente para o aproveitamento de água da chuva? Revista Engenharia Sanitária e Ambiental (in press).Google Scholar
  34. Simmons, G., Hope, V., Lewis, G., Whitmore, J., & Gao, W. (2001). Contamination of potable roof-collected rainwater in Auckland, New Zealand. Water Research, 35(6), 1518–1524.CrossRefGoogle Scholar
  35. Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2016). Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: a critical review. Water Research, 101, 582–596.CrossRefGoogle Scholar
  36. Zhang, Q., Wang, X., Hou, P., Wan, W., Li, R., Ren, Y., & Ouyang, Z. (2014). Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China. Journal of Environmental Management, 132, 178–187.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Science and TechnologyFederal University of AlfenasPoços de CaldasBrazil
  2. 2.MARE - Marine and Environmental Sciences CentreCoimbraPortugal
  3. 3.Department of Civil Engineering, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations