Water, Air, & Soil Pollution

, 228:344 | Cite as

Influences of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms

  • Leif H. Olson
  • John C. Misenheimer
  • Clay M. Nelson
  • Karen D. Bradham
  • Curtis J. Richardson
Article
  • 49 Downloads

Abstract

The storage of coal combustion residue (CCR) in surface water impoundments may have an impact on nearby water quality and aquatic ecosystems. CCR contains leachable trace elements that can enter nearby waters through spills and monitored discharge. It is important, therefore, to understand their environmental fate in affected systems. This experiment examined trace element leachability into freshwater from fly ash (FA), the most common form of CCR. The effects on water quality of FA derived from both high and low sulfur coal sources as well as the influences of two different emergent macrophytes, Juncus effusus and Eleocharis quadrangulata, were evaluated in wetland microcosms. FA leachate dosings increased water electric conductivity (EC), altered pH, and, most notably, elevated the concentrations of boron (B), molybdenum (Mo), and manganese (Mn). The presence of either macrophyte species helped reduce elevated EC, and B, Mo, and Mn concentrations over time, relative to microcosms containing no plants. B and Mo appeared to bioaccumulate in the plant tissue from the water when elevated by FA dosing, while Mn was not higher in plants dosed with FA leachates. The results of this study indicate that emergent macrophytes could help ameliorate downstream water contamination from CCR storage facilities and could potentially be utilized in wetland filtration systems to treat CCR wastewater before discharge. Additionally, measuring elevated B and Mo in aquatic plants may have potential as a monitoring tool for downstream CCR contamination.

Keywords

Coal combustion residues Fly ash Phytoremediation Juncus effusus Eleocharis quadrangulata Wetland Boron Manganese Molybdenum 

Supplementary material

11270_2017_3520_MOESM1_ESM.pdf (89 kb)
ESM 1(PDF 88 kb)
11270_2017_3520_MOESM2_ESM.pdf (137 kb)
ESM 2(PDF 137 kb)
11270_2017_3520_MOESM3_ESM.pdf (346 kb)
ESM 3(PDF 345 kb)

References

  1. Batty, L., Hooley, D., & Younger, P. (2008). Iron and manganese removal in wetland treatment systems: rates, processes and implications for management. Science of the Total Environment., 394, 1–8. doi:10.1016/j.scitotenv.2008.01.002.CrossRefGoogle Scholar
  2. Bhatia, M., & Goyal, D. (2014). Analyzing remediation potential of wastewater through wetland plants: a review. Environmental Progress & Sustainable Energy, 33, 9–27. doi:10.1002/ep.11822.CrossRefGoogle Scholar
  3. Brodie, G. A. Constructed wetlands for treating acid drainage at Tennessee Valley Authority coal facilities. Proceeding of the International Conference on the Use of Constructed Wetlands in Water Pollution Control, 461–470 (1990).Google Scholar
  4. Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22, 227–247. doi:10.2134/jeq1993.00472425002200020002x.CrossRefGoogle Scholar
  5. Cherry, D. S., & Guthrie, R. K. (1977). Toxic metals in surface waters from coal ash. Water Resources Bulletin, 13, 1227–1236.CrossRefGoogle Scholar
  6. Chou, C. L. (2012). Sulfur in coals: a review of geochemistry and origins. International Journal of Coal Geology, 100, 1–13. doi:10.1016/j.coal.2012.05.009.CrossRefGoogle Scholar
  7. R Core Team. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/.Google Scholar
  8. Dellantonio, A., Fitz, W. J., Repmann, F., & Wenzel, W. W. (2010). Disposal of coal combustion residues in terrestrial systems: contamination and risk management. Journal of Environmental Quality, 39, 761–775. doi:10.2134/jeq2009.0068.CrossRefGoogle Scholar
  9. Dorman, L., Castle, J. W., & Rodgers Jr., J. H. (2009). Performance of a pilot-scale constructed wetland system for treating simulated ash basin water. Chemosphere, 75, 939–947. doi:10.1016/j.chemosphere.2009.01.012.CrossRefGoogle Scholar
  10. Griffin, R. A., & Jurinak, J. J. (1973). Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Science, 166, 26–30.CrossRefGoogle Scholar
  11. Hallberg, K. B., & Johnson, D. B. (2005). Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Science of the Total Environment, 338, 115–124. doi:10.1016/j.scitotenv.2004.09.011.CrossRefGoogle Scholar
  12. Hansen, T. H., de Bang, T. C., Laursen, K. H., Pedas, P., Husted, S., & Schjoerring, J. K. (2013). Multielement plant tissue analysis using ICP spectrometry. Methods in Molecular Biology, 953, 121–141. doi:10.1007/978-1-62703-152-3_8.CrossRefGoogle Scholar
  13. Izquierdo, M., & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: an overview. International Journal of Coal Geology, 94, 54–66. doi:10.1016/j.coal.2011.10.006.CrossRefGoogle Scholar
  14. Lemly, A. D. (2015). Damage cost of the Dan River coal ash spill. Environmental Pollution, 197, 55–61. doi:10.1016/j.envpol.2014.11.027.CrossRefGoogle Scholar
  15. Lemly, A. D., & Skorupa, J. P. (2012). Wildlife and the coal waste policy debate: proposed rules for coal waste disposal ignore lessons from 45 years of wildlife poisoning. Environmental Science & Technology, 46, 8595–8600. doi:10.1021/es301467q.CrossRefGoogle Scholar
  16. Lian, J. J., Xu, S. G., Zhang, Y. M., & Han, W. (2013). Molybdenum(VI) removal by using constructed wetlands with different filter media and plants. Water Science and Technology, 67(8), 1859–1866.CrossRefGoogle Scholar
  17. Mackova, M., Dowling, D., & Macek, T. (2006). Phytoremediation and rhizoremediation (p. 61). Dordrecht: Springer.CrossRefGoogle Scholar
  18. Maine, M. A., Sune, N., Hadad, H., Sanchez, G., & Bonetto, C. (2009). Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. Journal of Environmental Management, 90, 355–363.CrossRefGoogle Scholar
  19. Michaud, S. C., & Richardson, C. J. (1989). Relative radial oxygen loss in five wetland plants. In D. A. Hammer (Ed.), Constructed wetlands for wastewater treatment: municipal, industrial and agricultural (pp. 501–507). Chelsea: Lewis Publishers.Google Scholar
  20. Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (5th ed.pp. 647–648). Hoboken: Wiley.Google Scholar
  21. Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package, http://CRAN.R-project.org/package=PMCMR (2014).
  22. Preussler, K. H., Mahler, C. F., & Maranho, L. T. (2015). Performance of a system of natural wetlands in leachate of a posttreatment landfill. International journal of Environmental Science and Technology, 12, 2623–2638. doi:10.1007/s13762-014-0674-0.CrossRefGoogle Scholar
  23. Richardson, C. J. (1989). Freshwater wetlands: transformers, filters or sinks? In R. R. Sharitz & J. W. Gibbons (Eds.), Freshwater wetlands and wildlife. Conf-8603101. DOE Symposium Series NO. 61 (pp. 25–46). Oak Ridge: U.S. DOE.Google Scholar
  24. Rowe, C. L. (2014). Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: recent advances and recommendations for further study. Science of the Total Environment, 485-486, 400–406. doi:10.1016/j.scitotenv.2014.03.119.CrossRefGoogle Scholar
  25. Rowe, C. L., Kinney, O. M., Fiori, A. P., & Congdon, J. D. (1996). Oral deformities in tadpoles (Rana catesbeiana) associated with coal ash deposition: effects on grazing ability and growth. Freshwater Biology, 36, 723–730.CrossRefGoogle Scholar
  26. Rowe, C. L., Hopkins, W. A., & Congdon, J. D. (2002). Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: a review. Environmental Monit. Assess., 80, 207–276. doi:10.1023/A:1021127120575.CrossRefGoogle Scholar
  27. Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., & Deonarine, A. (2010). Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey. Environmental Science and Technology, 44, 9272–9278. doi:10.1021/es1026739.CrossRefGoogle Scholar
  28. Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Schwartz, G., Romanski, A., & Smith, S. D. (2012). The impact of coal combustion residue effluent on water resources: a North Carolina example. Environmental Science & Technology, 46, 12226–12233. doi:10.1021/es303263x.CrossRefGoogle Scholar
  29. Sasaki, K., Ogino, T., Endo, Y., & Kurosawa, K. (2003). Field study on heavy metal accumulation in a natural wetland receiving acid mine drainage. Materials Transactions, 44, 1877–1884.CrossRefGoogle Scholar
  30. Sundberg-Jones, S. E., & Hassan, S. M. (2007). Macrophyte sorption and bioconcentrations of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Water, Air, and Soil Pollution, 183, 187–200. doi:10.1007/s11270-007-9368-2.CrossRefGoogle Scholar
  31. Turker, O. C., Bocuk, H., & Yakar, A. (2013). The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. Journal of Hazardous Materials, 252-253, 132–141. doi:10.1016/j.jhazmat.2013.02.032.CrossRefGoogle Scholar
  32. Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61P, 582–592. doi:10.1016/j.ecoleng.2013.06.023.CrossRefGoogle Scholar
  33. Wickham. (2001). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40, 1–29.Google Scholar
  34. WCA (2014). “Coal Statistics” World Coal Association. www.worldcoal.org/resources/coal-statistics. Accessed 21 Apr 2015.
  35. Ye, Z. H., Whiting, S. N., Lin, Z. Q., Lytle, C. M., Qian, J. H., & Terry, N. (2001a). Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. Journal of Environmental Quality, 30, 1464–1473.CrossRefGoogle Scholar
  36. Ye, Z. H., Whiting, S. N., Qian, J. H., Lytle, C. M., Lin, Z. Q., & Terry, N. (2001b). Trace element removal from coal ash leachate by a 10-year-old constructed wetland. Journal of Environmental Quality, 30, 1710–1719 http://www.jstatsoft.org/v40/i01/.CrossRefGoogle Scholar
  37. Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetlands plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721. doi:10.2134/jeq1998.00472425002700030032x.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leif H. Olson
    • 1
  • John C. Misenheimer
    • 2
  • Clay M. Nelson
    • 3
  • Karen D. Bradham
    • 3
  • Curtis J. Richardson
    • 1
  1. 1.Nicholas School of the EnvironmentDuke University Wetland CenterDurhamUSA
  2. 2.Oak Ridge Institute for Science and EducationResearch Triangle ParkUSA
  3. 3.Public Health Chemistry Branch, Exposure Methods and Measurements Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations