Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Herbicide Mixtures from Usual Practice in Sugarcane Crop: Evaluation of Oxidative Stress and Histopathological Effects in the Tropical Fish Oreochromis niloticus

  • 203 Accesses

  • 3 Citations


Sugarcane is one of the world’s most important commodities. In order to control weeds in the plantations and increase productivity, the mixing of different herbicides during spraying operations is commonplace. This practice is unregulated, and the impact on water quality and nontarget tropical species is poorly understood. In the present work, exposure and recovery assays were used to evaluate antioxidant enzyme activity and histopathological alterations in the liver of tilapia (Oreochromis niloticus) following exposure to mixtures of the herbicides widely used in sugarcane crops: ametryn (AMT), tebuthiuron (TBUT), diuron (DIU), and hexazinone (HZN). The greatest biochemical changes were observed for the mixture (DIU+HZN)+AMT+TBUT at the highest concentration tested (1/10 96hLC50). This mixture caused a significant increase (p < 0.01) of approximately 82% in GST activity after 14 days of exposure. For three of the mixtures evaluated, GST and CAT could be considered potential biochemical biomarkers of exposure to the herbicide mixtures due to the frequency, intensity, and statistical significance of alterations in the assimilation phase. Although morphological changes were evident in the hepatic tissue, severe damage was only noted in a few samples, and there were no statistically significant differences, relative to the control. The results of hepatic lesion recovery assays suggested that the most sensitive individuals affected by the xenobiotics were unable to achieve full recovery. It is anticipated that the data obtained may assist in the selection of biomarkers for monitoring purposes, as well as in reinforcing standards of conduct in the use of agrochemical mixtures in agriculture.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Aebi, H. (1984). Catalase in vitro. Academic Press, 105, 121–126. doi:10.1016/S0076-6879(84)05016-3.

  2. Babut, M., Arts, G. H., Caracciolo, A. B., Carluer, N., Domange, N., Friberg, N., et al. (2013). Pesticide risk assessment and management in a globally changing world—report from a European interdisciplinary workshop. Environmental Science and Pollution Research, 20(11), 8298–8312. doi:10.1007/s11356-013-2004-3.

  3. Baccari, G. C., Pinelli, C., Santillo, A., Minucci, S., & Rastogi, R. K. (2011). Mast cells in nonmammalian vertebrates: an overview. In K. W. Jeon (Ed.), International review of cell and molecular biology (Vol. 290, pp. 1–50). Amsterdam: Elsevier Inc..

  4. Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., & Wahli, T. (1999). Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22(1), 25–34. doi:10.1046/j.1365-2761.1999.00134.x.

  5. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization (WAO) Journal, 5, 9–19 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488923/pdf/waoj-5-9.pdf. Accessed 22 Feb 2017.

  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. doi:10.1016/0003-2697(76)90527-3.

  7. Branco, V., Canário, J., Holmgren, A., & Carvalho, C. (2011). Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicology and Applied Pharmacology, 251(2), 95–103 http://dx.doi.org/10.1016/j.taap.2010.12.005.

  8. Brasil, Ministry of the Environment, National Environmental Council – CONAMA. (2005). CONAMA Framework Resolution 357/2005. Official Gazette, Brasília, 18th march 2005. 58–63 http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. (In Portuguese). Accessed 22 Feb 2017.

  9. Brodeur, J. C., Poliserpi, M. B., D'Andrea, M. F., & Sánchez, M. (2014). Synergy between glyphosate- and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American toad Rhinella arenarum . Chemosphere. doi:10.1016/j.chemosphere.2014.02.065.

  10. Catalgol, B. K., Ozden, S., & Alpertunga, B. (2007). Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes. Toxicology in Vitro, 21, 1538–1544. doi:10.1016/j.tiv.2007.06.002.

  11. Costa, P. M., Diniz, M. S., Caeiro, S., Lobo, J., Martins, M., Ferreira, A. M., et al. (2009). Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquatic Toxicology, 92, 202–212. doi:10.1016/j.aquatox.2008.12.009.

  12. Costa, P. M., Caeiro, S., Lobo, J., Martins, M., Ferreira, A. M., Caetano, M., et al. (2011). Estuarine ecological risk based on hepatic histopathological indices from laboratory and in situ tested fish. Marine Pollution Bulletin, 62(1), 55–65. doi:10.1016/j.marpolbul.2010.09.009.

  13. Crestani, M., Menezes, C., Glusczak, L., Miron, D. S., Spanevello, R., Silveira, A., et al. (2007). Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern. Chemosphere, 67(11), 2305–2311. doi:10.1016/j.chemosphere.2006.09.070.

  14. Das, S., & Gupta, A. (2012). Effect of malathion (EC) on gill morphology of Indian flying barb, Esomus danricus (Hamilton-Buchanan). World Journal of Fish and Marine Sciences, 4(6), 626–628. doi:10.5829/idosi.wjfms.2012.04.06.6490.

  15. FAO—Food and Agriculture Organization of the United Nations. (2014). FAO STAT, food and agriculture data: Crops—sugarcane. http://www.fao.org/faostat/en/#data/QC. Accessed 03 Mar 2017.

  16. FAO—Food and Agriculture Organization of the United Nations. (2016). Cultured aquatic species information programme: Oreochromis niloticus. Text by Rakocy, J. E. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 18 February 2005. http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en. Accessed 24 Feb 2017.

  17. Fatima, M., Mandiki, S. N., Douxfils, J., Silvestre, F., Coppe, P., & Kestemont, P. (2007). Combined effects of herbicides on biomarkers reflecting immune-endocrine interactions in goldfish. Immune and antioxidant effects. Aquatic Toxicology, 81(2), 159–1,67. doi:10.1016/j.aquatox.2006.11.013.

  18. Figueiredo-Fernandes, A., Fontaínhas-Fernandes, A., Monteiro, R., Reis-Henriques, M. A., & Rocha, E. (2006). Effects of the fungicide mancozeb on liver structure of Nile tilapia, Oreochromis niloticus: assessment and quantification of induced cytological changes using qualitative histopathology and the stereological point-sampled intercept method. Bulletin of Environmental Contamination and Toxicology, 76(2), 249–255. doi:10.1007/s00128-006-0914-1.

  19. Gonçalves, C., Martins, M., Diniz, M. S., Costa, M. H., Caeiro, S., & Costa, P. M. (2014). May sediment contamination be xenoestrogenic to benthic fish? A case study with Solea senegalensis. Marine Environmental Research, 99, 170–178 http://dx.doi.org/10.1016/j.marenvres.2014.04.012.

  20. Güngördü, A. (2013). Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis. Aquatic Toxicology, 140–141, 220–228. doi:10.1016/j.aquatox.2013.06.012.

  21. Hanada, S., Harada, M., Kumemura, H., Omary, M. B., Koga, H., Kawaguchi, T., et al. (2007). Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. Journal of Hepatology, 47(1), 93–102. doi:10.1016/j.jhep.2007.01.039.

  22. Hanada, S., Harada, M., Abe, M., Akiba, J., Sakata, M., Kwan, R., et al. (2012). Aging modulates susceptibility to mouse liver Mallory-Denk body formation. Journal of Histochemistry & Cytochemistry, 60(6), 475–483. doi:10.1369/0022155412441478.

  23. Hassaan, M. S., Goda, A. M. A. S., Mahmoud, S. A., & Tayel, S. (2014). Protective effect of dietary vitamin E against fungicide copperoxychloride stress on Nile tilapia, Oreochromis niloticus (L.), fingerlings. International Aquatic Research, 6, 58. doi:10.1007/s40071-014-0058-6.

  24. Herzfeld, D., & Sargent, K. (2011). Pesticide formulations. In D. Herzfeld & K. Sargent (Eds.), Private pesticide applicator training manual. 19 th edition. Pesticide safety and environmental education program (pp. 85–107). Minnesota: University of Minnesota Extension http://www.extension.umn.edu/agriculture/pesticide-safety/ppat_manual/Chapter%204.pdf. Accessed 22 Feb 2017.

  25. Holland, J. W., & Rowley, A. F. (1998). Studies on the eosinophilic granule cells in the gills of the rainbow trout, Oncorhynchus mykiss. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 120(2), 321–328. doi:10.1016/S0742-8413(98)10016-6.

  26. Husak, V. V., Mosiichuk, N. M., Maksymiv, I. V., Sluchyk, I. Y., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2014). Histopathological and biochemical changes in goldfish kidney due to exposure to the herbicide Sencor may be related to induction of oxidative stress. Aquatic Toxicology, 155, 181–189. doi:10.1016/j.aquatox.2014.06.020.

  27. Jonsson, C. M., Ferracini, V. L., Paraiba, L. C., Rangel, M., & Aguiar, S. R. (2002). Biochemical changes and accumulation in “pacu” fish (Metynnis argenteus) exposed to paclobutrazol. Scientia Agricola, 59(3), 441–446. doi:10.1590/S0103-90162002000300005 (In Portuguese).

  28. Jordaan, M. S., Reinecke, S. A., & Reinecke, A. J. (2013). Biomarker responses and morphological effects in juvenile tilapia Oreochromis mossambicus following sequential exposure to the organophosphate azinphos-methyl. Aquatic Toxicology, 144-145, 133–140. doi:10.1016/j.aquatox.2013.10.007.

  29. Keen, J. H., Habig, W. H., & Jakoby, W. B. (1976). Mechanism for several activities of the glutathione S-transferase. The Journal of Biological Chemistry, 251, 6183–6188. http://www.jbc.org/content/251/20/6183.full.pdf. Accessed 12 Aug 2017.

  30. Koller, L. D. (1973). A note on eosinophilic cytoplasmatic bodies in the liver of a rabbit. Veterinary Pathology, 10(4), 295–298 http://journals.sagepub.com/doi/pdf/10.1177/030098587301000402. Accessed 22 Feb 2017.

  31. Koutnik, D., Stara, A., & Velisek, J. (2015). The effect of selected triazines on fish: a review. Slovenian Veterinary Research, 52(3), 107–131.

  32. Kwok, K. W. H., Leung, K. M. Y., Lui, G. S. G., Chu, V. K. H., Lam, P. K. S., Morritt, D., et al. (2007). Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integrated Environmental Assessment and Management, 3(1), 1551–3793 http://dx.doi.org/10.1002/ieam.5630030105.

  33. Laetz, C. A., Baldwin, D. H., Collier, T. K., Hebert, V., Stark, J. D., & Scholz, N. L. (2009). The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environmental Health Perspectives, 117(3), 348–353 https://ehp.niehs.nih.gov/wp-content/uploads/117/3/ehp.0800096.pdf. Accessed 22 Feb 2017.

  34. Manugistics. (2001). Statgraphics plus: Version 5.1 for Windows. Rockville.

  35. Mattos, M. L. T., Peralba, M. C. R., Dias, S. L. P., Prata, F., & Camargo, L. (2002). Environmental monitoring of glyphosate and its metabolite (aminomethylphosphonic acid) in tillage water of irrigable rice. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 2(4), 145–154. doi:10.5380/pes.v12i0.3156 (In Portuguese).

  36. Mehta, C. R., & Patel, N. R. (1983). A network algorithm for performing Fisher’s exact test in r x c contingency tables. Journal of the American Statistical Association, 78, 427–434 http://www.cytel.com/hubfs/0-library-0/pubs/a-network-algorithm-for-performing-fishers-exact-test-in-r--c-contingency-tables.pdf?t=1485372895302. Accessed 24 Feb 2017.

  37. Mela, M., Guiloski, I. C., Doria, H. B., Randi, M. A., Oliveira Ribeiro, C. A., Pereira, L., et al. (2013). Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen). Ecotoxicology and Environmental Safety, 93, 13–21. doi:10.1016/j.ecoenv.2013.03.026.

  38. Modesto, K. A., & Martinez, C. B. R. (2010). Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere, 78(3), 294–299. doi:10.1016/j.chemosphere.2009.10.047.

  39. Mofeed, J., & Mosleh, Y. Y. (2013). Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicology and Environmental Safety, 95(1), 234–240. doi:10.1016/j.ecoenv.2013.05.023.

  40. Monteiro, D. A., Almeida, J. A., Rantin, F. T., & Kalinin, A. L. (2006). Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 143(2), 141–149. doi:10.1016/j.cbpc.2006.01.004.

  41. Monteiro, R. T. R., Silva, G. H., Messias, T. G., Queiroz, S. C. N., Assalin, M. R., Cassoli, D. R., et al. (2014). Chemical and ecotoxicological assessments of water samples before and after being processed by a water treatment plant. Revista Ambiente & Água, 9(1), 6–18. doi:10.4136/ambi-agua.1292.

  42. Moraes, B. S., Loro, V. L., Glusczak, L., Pretto, A., Menezes, C., Marchezan, E., & Machado, S. O. (2007). Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere, 68(8), 1597–1601. doi:10.1016/j.chemosphere.2007.03.006.

  43. Moreira, J. C., Peres, F., Simões, A. C., Pignati, W. A., Dores, E. C., Vieira, S. N., Strüssmann, C., & Mott, T. (2012). Groundwater and rainwater contamination by pesticides in an agricultural region of Mato Grosso state in central Brazil. Ciência & Saúde Coletiva, 17(6), 1557–1568. doi:10.1590/S1413-81232012000600019 (In Portuguese).

  44. Moura, M. A. M., & Jonsson, C. M. (2016). Acute toxicity of mixture of sugarcane herbicides to tilapia fingerlings. Ecotoxicology and Environmental Contamination, 11(1), 15–20. doi:10.5132/eec.2016.01.03.

  45. Moura, M. A. M., Franco, D. A. S. F., & Matallo, M. B. (2008). Herbicides impact on water resources. Revista Tecnologia & Inovação Agropecuária, 1, 142–151 http://www.dge.apta.sp.gov.br/publicacoes/T&IA/T&IAv1n1/Revista_Apta_Artigo_117.pdf (In Portuguese). Accessed 02 Mar 2017.

  46. Nava-Álvarez, R., Razo-Estrada, A. C., García-Medina, S., Gómez-Olivan, L. M., & Galar-Martínez, M. (2014). Oxidative stress induced by mixture of diclofenac and acetaminophen on common carp (Cyprinus carpio). Water, Air, & Soil Pollution, 225, 1873. doi:10.1007/s11270-014-1873-5.

  47. Oliveira, R. A., Roat, T. C., Carvalho, S. M., & Malaspina, O. (2014). Side-effects of thiamethoxam on the brain and midgut of the Africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environmental Toxicology, 29(10), 1122–1133. doi:10.1002/tox.21842.

  48. Oropesa, A. L., García-Cambero, J. P., Gómez, L., Roncero, V., & Soler, F. (2009). Effect of long-term exposure to simazine on histopathology, hematological, and biochemical parameters in Cyprinus carpio. Environmental Toxicology, 24(2), 87–99. doi:10.1002/tox.20412.

  49. Ortiz-Ordoñez, E., Uria-Galicia, E., Ruiz-Picos, R. A., Duran, A. G. S., Trejo, Y. H., Sedeno-Diaz, J. E., & Lopez-Lopez, E. (2011). Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis. Archives of Environmental Contamination and Toxicology, 61(3), 443–452. doi:10.1007/s00244-011-9648-0.

  50. Otitoju, O., & Onwurah, I. N. E. (2005). Superoxide dismutase (SOD) activity and serum calcium level in rats exposed to a locally produced insecticide “Rambo insect powder”. Animal Research International, 2(1), 261–266. doi:10.4314/ari.v2i1.40850.

  51. Pathiratne, A., & Kroon, F. J. (2016). Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia’s tropical freshwater ecosystems. Environmental Toxicology and Chemistry, 35(2), 419–428. doi:10.1002/etc.3199.

  52. Paulino, M. G., Souza, N. E. S., & Fernandes, M. N. (2012). Subchronic exposure to atrazine induces biochemical and histopathological changes in the gills of a neotropical freshwater fish, Prochilodus lineatus. Ecotoxicology and Environmental Safety, 80(1), 6–13. doi:10.1016/j.ecoenv.2012.02.001.

  53. Pinheiro, A., Silva, M. R., & Kraisch, R. (2010). Presence of pesticides in surface water and groundwater in the basin of Itajaí, SC. REGA—Revista de Gestão de Água da América Latina, 7(2), 17–26 http://www.abrh.org.br/SGCv3/UserFiles/Sumarios/5600b5161b6d9eabf8b99a621bd33c16_eb0bba188410253222b079565d16fd2e.pdf (In Portuguese) Accessed 02 Mar 2017.

  54. Poleksic, V., & Karan, V. (1999). Effects of trifluralin on carp: biochemical and histological evaluation. Ecotoxicology and Environmental Safety, 43, 213–221.

  55. Poleksic, V., & Mitrovic-Tutundzic, V. (1994). Fish gills as a monitor of sublethal and chronic effects of pollution. In R. Müller & R. Lloyd (Eds.), Sublethal and chronic effects of pollutants on freshwater fish (Vol. 30, pp. 339–352). Oxford: Fishing News Books.

  56. Prammer, B. (1998). Directiva 98/83/CE do Conselho de 3 de novembro de 1998 relativa à qualidade da água destinada ao consumo humano. Jornal Oficial das Comunidades Européias, 1, 1–23.

  57. Prestes, E. B., Jonsson, C. M., & Castro, V. L. S. (2011). Toxicity of formulations based on piraclostrobin, epoxiconazole and its combination on algae Pseudokirchneriella subcapitata. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 21, 39–46. doi:10.5380/pes.v21i0.25943 (In Portuguese).

  58. Remacle, J., Lambert, D., Raes, M., Pigeolet, E., & Michiels, C. (1992). Importance of various antioxidant enzymes for cell stability: confrontation between theoretical and experimental data. Biochemical Journal, 286, 41–46 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133015/pdf/biochemj00129-0048.pdf. Accessed 02 Mar 2017.

  59. Rossi, S. C., Silva, M. D., Piancini, L. D. S., Ribeiro, C. A. O., Cestari, M. M., & Assi, H. C. S. (2011). Sublethal effects of waterborne herbicides in tropical freshwater fish. Bulletin of Environmental Contamination and Toxicology, 87(6), 603–607. doi:10.1007/s00128-011-0397-6.

  60. Saka, M., Tada, N., & Kamata, Y. (2013). Application of an amphibian (Silurana tropicalis) metamorphosis assay to the testing of the chronic toxicity of three rice paddy herbicides: simetryn, mefenacet, and thiobencar. Ecotoxicology and Environmental Safety, 92(1), 135–143. doi:10.1016/j.ecoenv.2013.03.023.

  61. Sancho, E., Fernández-Vega, C. E., Villarroel, M. J., Andreu-Moliner, E., & Ferrando, M. D. (2009). Physiological effects of tricyclazole on zebrafish (Danio rerio) and post-exposure recovery. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology, 150(1), 25–32. doi:10.1016/j.cbpc.2009.02.004.

  62. Santos, E. A., Correia, N. M., & Botelho, R. G. (2013). Herbicides residues in water bodies—a review. Revista Brasileira de Herbicidas, 12(2), 188–201. doi:10.7824/rbh.v12i2.245 (In Portuguese). Accessed 03 Mar 2017.

  63. Sevcikova, M., Modra, H., Blahova, J., Dobsikova, R., Plhalova, R. L., Zitka, O., et al. (2016). Biochemical, haematological and oxidative stress responses of common carp (Cyprinus carpio L.) after sub-chronic exposure to copper. Veterinární Medicína, 61(1), 35–50 http://vri.cz/docs/vetmed/61-1-35.pdf. Accessed 03 Mar 2017.

  64. Silva, E., Daam, M. A., & Cerejeira, M. J. (2015). Predicting the aquatic risk of realistic pesticide mixtures to species assemblages in Portuguese river basins. Journal of Environmental Sciences, 31(1), 12–20. doi:10.1016/j.jes.2014.11.006.

  65. Stara, A., Machova, J., & Velisek, J. (2012). Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.) Environmental Toxicology and Pharmacology, 33(2), 334–343. doi:10.1016/j.etap.2011.12.019.

  66. Stara, A., Kouba, A., & Velisek, J. (2014). Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in red swamp crayfish (Procambarus clarkii). BioMed Research International, Article ID 680131, 6 pages. doi:10.1155/2014/680131.

  67. Strmac, M., & Braunbeck, T. (2002). Cytological and biochemical effects of a mixture of 20 pollutants on isolated rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicology and Environmental Safety, 53(2), 293–304. doi:10.1006/eesa.2002.2221.

  68. Tabatabaie, T., & Floyd, R. A. (1994). Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Archives of Biochemistry and Biophysics, 314(1), 112–119. doi:10.1006/abbi.1994.1418.

  69. Tallarida, R. J. (2001). Drug synergism: its detection and applications. Journal of Pharmacology and Experimental Therapeutics, 298(3), 865–872 http://jpet.aspetjournals.org/content/jpet/298/3/865.full.pdf. Accessed 03 Mar 2017.

  70. Tang, J. Y., & Escher, B. I. (2014). Realistic environmental mixtures of micropollutants in surface, drinking, and recycled water: herbicides dominate the mixture toxicity toward algae. Environmental Toxicology and Chemistry, 33(6), 1427–1436. doi:10.1002/etc.2580.

  71. Toni, C., Menezes, C. C., Loro, V. L., Clasen, B. E., Cattaneo, R., Santi, A., et al. (2010). Oxidative stress biomarkers in Cyprinus carpio exposed to commercial herbicide bispyribac-sodium. Journal of Applied Toxicology, 30(6), 590–595. doi:10.1002/jat.1530.

  72. Topp, E., & Smith, W. (1992). Sorption of the herbicides atrazine and metolachlor to selected plastics and silicone-rubber. Journal of Environmental Quality, 21(3), 316–317. doi:10.2134/jeq1992.00472425002100030002x.

  73. Ukeda, H., Maeda, S., Ishii, T., Sawamura, M. (1997). Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3′-1-[(phenylamino)-carbonyl]-3, 4-tetrazolium-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Analytical Biochemistry, 251, 206–209. doi:10.1006/abio.1997.2273.

  74. Valz, P. D., & Thompson, M. E. (1994). Exact inference for Kendall’s S and Spearman’s Rho with extensions to Fisher’s exact test in r x c contingency tables. Journal of Computational and Graphical Statistics, 3(4), 459–472. doi:10.1080/10618600.1994.10474658.

  75. Vieira, C. E. D., Almeida, M. S., Galindo, B. A., Pereira, L., & Martinez, C. B. R. (2014). Integrated biomarker response index using a Neotropical fish to assess the water quality in agricultural areas. Neotropical Ichthyology, 12(1), 153–164. doi:10.1590/S1679-62252014000100017.

  76. Walker, C.H. (1995). Biochemical biomarkers in ecotoxicology - some recent developments. The Science of the Total Environment, 171(1-3), 189–195. doi:10.1016/0048-9697(95)04720-6.

  77. Wheelock, C. E., Miller, J. L., Miller, M. G., Shan, G., Geem, S. J., & Hammock, B. D. (2005). Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca. Aquatic Toxicology, 74(1), 47–52. doi:10.1016/j.aquatox.2005.04.007.

  78. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X. (2012). Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere, 88(4), 377–383. doi:10.1016/j.chemosphere.2012.02.049.

Download references


Financial support was provided by São Paulo Research Foundation (FAPESP) (grant nos. 2010/06294-8 and 2011/09579-6).

Author information

Correspondence to Mônica Accaui Marcondes de Moura.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Animals

The procedures described in the present paper were authorized by the Animal Experimentation Ethics Committee of Embrapa Environment (Registration No. 002/2012) and respect national and international safety regulations and ethical principles for animal welfare and the 3Rs principle.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jonsson, C.M., Arana, S., Ferracini, V.L. et al. Herbicide Mixtures from Usual Practice in Sugarcane Crop: Evaluation of Oxidative Stress and Histopathological Effects in the Tropical Fish Oreochromis niloticus . Water Air Soil Pollut 228, 332 (2017). https://doi.org/10.1007/s11270-017-3506-2

Download citation


  • Tropical teleost
  • Biochemical biomarkers
  • Histopathological biomarkers
  • Long-term assay
  • Nontarget organisms
  • Sugarcane
  • Antioxidant enzymes
  • Oreochromis niloticus