Skip to main content
Log in

Effective Enrichment and Simultaneous Quantitative Analysis of Trace Heavy Metal Ions Mixture in Aqueous Samples by the Combination of Radial Electric Focusing Solid Phase Extraction, UV-Vis Spectrophotometric Determination and Partial Least Squares Regression

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

An efficient and stable preconcentration method for ionic and ionizable analytes, named radical electric focusing solid phase extraction (REFSPE), was proposed here for enriching trace Cu(II), Ni(II), and Co(II) from water samples. In REFSPE, radical electric field was introduced into solid phase extraction system to enhance the mass transfer rate of heavy metal ions in aqueous solution and shorten the extraction time obviously. The concentration of mixed heavy metal ions were predicted using partial least squares (PLS) regression by analyzing ultraviolet and visible spectrum efficiently. By optimizing chromogenic agent, pH values, extraction voltage, extraction time, and PLS parameters, the proposed method had higher figures of merit. The comparison of the determination data and the calculation results showed that the proposed method can provide a favorite quantitative precision with expanded measuring range. The limit of detection (LOD) for Cu(II), Ni(II), and Co(II) were 0.10, 0.13, and 0.15 μg L−1, respectively. The reliability was confirmed by the RSD lower than 5% and the recovery of 95–102%. The novel enrichment method has a great potential for applications in detecting different ionic and ionizable analytes with the help of spectrometry determination and chemometrics calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anthemidis, A. N., Zachariadis, G. A., Farastelis, C. G., & Stratis, J. A. (2004). On-line liquid-liquid extraction system using a new phase separator for flame atomic absorption spectrometric determination of ultra-trace cadmium in natural waters. Talanta, 62(3), 437–443.

    Article  CAS  Google Scholar 

  • Ayenimo, J. G., Yusuf, A. M., Adekunle, A. S., & Makinde, O. W. (2010). Heavy metal exposure from personal care products. Bulletin of Environmental Contamination and Toxicology, 84(1), 8–14.

    Article  CAS  Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.

    Article  CAS  Google Scholar 

  • Duruibe, J. O., & Ogwuegbu, M. O. C. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118.

    Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.

    Article  CAS  Google Scholar 

  • Feist, B., & Mikula, B. (2014). Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system. Food Chemistry, 147(6), 225–229.

    Article  CAS  Google Scholar 

  • Feng, Q. Z., Zhao, L. X., Yan, W., Lin, J. M., & Zheng, Z. X. (2009). Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples. Journal of Hazardous Materials, 167(1–3), 282–288.

    Article  CAS  Google Scholar 

  • Forzani, E. S., Zhang, H., Chen, W., & Tao, N. (2005). Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. Environmental Science & Technology, 39(5), 1257–1262.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407–418.

    Article  CAS  Google Scholar 

  • Guo, Y., Zhao, H., Han, Y., Liu, X., Guan, S., Zhang, Q., et al. (2017). Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 532–536.

    Article  CAS  Google Scholar 

  • Hennion, M. C. (1999). Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. Journal of Chromatography A, 856(1–2), 3–54.

    Article  CAS  Google Scholar 

  • Huang, D., Niu, C., Wang, X., Lv, X., & Zeng, G. (2013). “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Analytical Chemistry, 85(2), 1164–1170.

    Article  CAS  Google Scholar 

  • Jia, J., Wu, A., & Luan, S. (2014). Spectrometry recognition of polyethyleneimine towards heavy metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 449, 1–7.

    Article  CAS  Google Scholar 

  • Jiang, J. H., Berry, R. J., Siesler, H. W., & Ozaki, Y. (2002). Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Analytical Chemistry, 74(14), 3555–3565.

    Article  CAS  Google Scholar 

  • Juan, A. D., & Tauler, R. (2003). Chemometrics applied to unravel multicomponent processes and mixtures : revisiting latest trends in multivariate resolution. Analytica Chimica Acta, 500(1), 195–210.

    Article  Google Scholar 

  • Kumar, M., Rathore, D. P. S., & Singh, A. K. (2001). Pyrogallol immobilized Amberlite XAD-2: a newly designed collector for enrichment of metal ions prior to their determination by flame atomic absorption spectrometry. Microchimica Acta, 137(3), 127–135.

    Article  CAS  Google Scholar 

  • Li, P., Lin, C., Cheng, H., Duan, X., & Lei, K. (2015). Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicology & Environmental Safety, 113, 391–399.

    Article  CAS  Google Scholar 

  • Losev, V. N., Buyko, O. V., Trofimchuk, A. K., & Zuy, O. N. (2015). Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP–OES determination of metals in natural waters. Microchemical Journal, 123, 84–89.

    Article  CAS  Google Scholar 

  • Massadeh, A. M., Alomary, A. A., Mir, S., Momani, F. A., Haddad, H. I., & Hadad, Y. A. (2016). Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES. Environmental Science and Pollution Research, 23(13), 13424–13431.

    Article  CAS  Google Scholar 

  • Mehdinia, A., & Aziz-Zanjani, M. O. (2013). Advances for sensitive, rapid and selective extraction in different configurations of solid-phase microextraction. TrAC Trends in Analytical Chemistry, 51(11), 13–22.

    Article  CAS  Google Scholar 

  • Nakajima, H., Hara, K., Yamamoto, Y., & Itoh, K. (2015). Effects of Cu on the content of chlorophylls and secondary metabolites in the Cu-hyperaccumulator lichen Stereocaulon japonicum. Ecotoxicology & Environmental Safety, 113, 477–482.

    Article  CAS  Google Scholar 

  • Nardi, E. P., Evangelista, F. S., Tormen, L., Saint’Pierre, T. D., Curtius, A. J., Souza, S. S. D., et al. (2009). The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chemistry, 112(3), 110–113.

    Article  Google Scholar 

  • Ni, Y., Lin, D., & Kokot, S. (2006). Synchronous fluorescence, UV–visible spectrophotometric, and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline)copper(II) complex and neutral red with DNA. Analytical Biochemistry, 352(2), 231–242.

    Article  CAS  Google Scholar 

  • Peñalver, A., Pocurull, E., Borrull, F., & Marcé, R. M. (2002). Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples. Journal of Chromatography A, 953(1–2), 79–87.

    Article  Google Scholar 

  • Puig, P., Borrull, F., Calull, M., & Aguilar, C. (2008). Sorbent preconcentration procedures coupled to capillary electrophoresis for environmental and biological applications. Analytica Chimica Acta, 616(1), 1.

    Article  CAS  Google Scholar 

  • Qiao, Y., Yang, Y., Gu, J., & Zhao, J. (2013). Distribution and geochemical speciation of heavy metals in sediments from coastal area suffered rapid urbanization, a case study of Shantou Bay, China. Marine Pollution Bulletin, 68(1–2), 140–146.

    Article  CAS  Google Scholar 

  • Silva, M. A. M. D., & Curtius, A. J. (2000). Determination of trace elements in water samples by ultrasonic nebulization inductively coupled plasma mass spectrometry after cloud point extraction. Spectrochimica Acta, Part B: Atomic Spectroscopy, 55(7), 803–813.

    Article  Google Scholar 

  • Sitko, R. (2015). Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Analytical Chemistry, 87(6), 3535–3542.

    Article  CAS  Google Scholar 

  • Su, R., Ruan, G., Chen, Z., Du, F., & Li, J. (2015). Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II). Journal of Separation Science, 38(24), 4262–4268.

    Article  CAS  Google Scholar 

  • Svegl, I. G., & Ogorevc, B. (2000). Soil-modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions. Fresenius Journal of Analytical Chemistry, 367(8), 701–706.

    Article  CAS  Google Scholar 

  • Talio, M. C., Luconi, M. O., Masi, A. N., & Fernández, L. P. (2009). Determination of cadmium at ultra-trace levels by CPE-molecular fluorescence combined methodology. Journal of Hazardous Materials, 170(1), 272–277.

    Article  CAS  Google Scholar 

  • Trindade, A. S., Dantas, A. F., Lima, D. C., Ferreira, S. L., & Teixeira, L. S. (2015). Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry. Food Chemistry, 185, 145–150.

    Article  CAS  Google Scholar 

  • Tukur, S. A., Yusof, N. A., & Hajian, R. (2015). Gold nanoparticles-modified screen-printed electrode for determination of Pb(II) ion using linear sweep anodic stripping voltammetry. IEEE Sensors Journal, 15(5), 2780–2784.

    CAS  Google Scholar 

  • Wei, Y., Li, B., Wang, X., & Duan, Y. (2014). Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I. Biosensors & Bioelectronics, 58(8), 276–281.

    Article  CAS  Google Scholar 

  • Zanjanchi, M. A., Noei, H., & Moghimi, M. (2006). Rapid determination of aluminum by UV-Vis diffuse reflectance spectroscopy with application of suitable adsorbents. Talanta, 70(5), 933–939.

    Article  CAS  Google Scholar 

  • Zeiner, M., Rezić, T., & Šantek, B. (2010). Monitoring of Cu, Fe, Ni, and Zn in wastewater during treatment in a horizontal rotating tubular bioreactor. Water Environment Research, 82(2), 183–186. doi:10.2175/106143009x442907.

    Article  CAS  Google Scholar 

  • Zhan, S., Xu, H., Zhan, X., Wu, Y., Wang, L., Lv, J., et al. (2015). Determination of silver(I) ion based on the aggregation of gold nanoparticles caused by silver-specific DNA, and its effect on the fluorescence of rhodamine B. Microchimica Acta, 182(7), 1411–1419.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project of Innovation and Entrepreneurship Training for College Students of China (No. 201410058050), the National Natural Science Foundation of China (No. 21405110), and the National Natural Science Foundation of China (No. 21476172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugao Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liu, X., Han, Y. et al. Effective Enrichment and Simultaneous Quantitative Analysis of Trace Heavy Metal Ions Mixture in Aqueous Samples by the Combination of Radial Electric Focusing Solid Phase Extraction, UV-Vis Spectrophotometric Determination and Partial Least Squares Regression. Water Air Soil Pollut 228, 317 (2017). https://doi.org/10.1007/s11270-017-3502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3502-6

Keywords

Navigation