Advertisement

Remediation of Phenanthrene-Contaminated Soil by Persulfate Activated with Fe-Modified Diatomite: Kinetic and Statistical Approaches

  • Celyna K. O. Silva-Rackov
  • Leandro G. AguiarEmail author
  • Alessandra R. Souza
  • Silvia S. O. Silva
  • Alan G. Câmara
  • Marilda M. G. R. Vianna
  • Edson L. Foletto
  • Claudio A. O. Nascimento
  • Osvaldo Chiavone-Filho
Article

Abstract

An innovative diatomite-supported iron catalyst has been developed by using an impregnation process with a mixture of ferrous (Fe2+) and ferric (Fe3+) ions in the form of precipitated iron hydroxides. Raw and modified diatomite samples have been characterized by X-ray fluorescence and scanning electron microscopy. The main characterization results have revealed that modified diatomites are amorphous and have higher iron concentrations than raw diatomite. The results also indicate that the modified materials provided significant catalytic activity on phenanthrene degradation by using sodium persulfate. Satisfactory results were obtained with 45 g/L of sodium persulfate and 1 g of modified diatomite, thus degrading 98% of phenanthrene during 168 h of treatment. Kinetic and statistical approaches were developed for the remediation process herein, which have been validated with experimental data, thence yielding suitable results.

Keywords

Advanced oxidation process Phenanthrene Diatomite Modeling Statistical Kinetic Persulfate Soil 

Notes

Acknowledgements

Acknowledgements to the National Institute of Science and Technology for Environmental Studies (INCT-EMA), Brazilian Research Council (CNPq), State of São Paulo Research Foundation (FAPESP—Project No. 2014/22080-9), Coordination for the Improvement of Higher Education Personnel (CAPES—Project PROCAD-CAPES No. 88881.068433/2014-01) for the financial support.

References

  1. Abdel-Shafy, H. I., & Mansour, M. S. M. (2015). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.CrossRefGoogle Scholar
  2. Anjos, RB (2012) Assessment of PAH and BTEX in soil and groundwater in fuel reseller stations: Case study in Natal-RN city. Masters dissertation. Federal University of Rio Grande do Norte, Department of Science and Petroleum Engineering. Natal, Brazil.Google Scholar
  3. Bakr, H. E. G. M. M. (2010). Diatomite: its characterization, modifications and applications. Asian Journal of Materials Science, 2(3), 121–136.CrossRefGoogle Scholar
  4. Favera, C. H. D. (2008). Contaminated sites by hydrocarbons: principal remediation techniques and application example. Course conclusion work of civil Engineering. Brazil: Federal University of Santa Maria.Google Scholar
  5. Forsey, S. P., Thomson, N. R., & Barker, J. F. (2010). Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere, 79, 628–636.CrossRefGoogle Scholar
  6. Fu, J., Zhaob, Y., & Wu, Q. J. (2007). Optimizing photoelectrocatalytic oxidation of fulvic acid using response surface methodology. Journal of Hazardous Materials, 144, 499–505.CrossRefGoogle Scholar
  7. Huling, S., & Pivetz, B. (2006). Engineering issue: in situ chemical oxidation, EPA 600/R-06/072. U.S. EPA, Office of Research and Development, 60 pp.Google Scholar
  8. Joglekar, A. M., & May, A. T. (1987). Product excellence through design of experiments. Cereal Food World, 32, 857–868.Google Scholar
  9. Jorfi, S., Rezaee, A., Moheb-ali, G., & Jaafarzadeh, N. (2013). Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. Journal of Environmental Health Science & Engineering, 1, 11–17.CrossRefGoogle Scholar
  10. Kong, S.-H., Watts, R. J., & Choi, J.-H. (1998). Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere, 37, 1473–1482.CrossRefGoogle Scholar
  11. Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 37, 1150–1158.CrossRefGoogle Scholar
  12. Leneva, N. A., Kolomytseva, M. P., Baskunov, B. P., & Golovleva, L. A. (2009). Phenanthrene and anthracene degradation by microorganisms of the genus Rhodococcus. Applied Biochemistry and Microbiology, 45(2), 169–175.CrossRefGoogle Scholar
  13. Osgerby, I. T. (2006). ISCO technology overview: do you really understand the chemistry? In E. J. Calabrese, P. T. Kostecki, J. Dragun, & I. T. Osgerby (Eds.), Contaminated soils, sediments and water (pp. 287–308). USA: Springer.CrossRefGoogle Scholar
  14. Pookmanee, P., Thippraphan, P., & Phanichphant, S. (2010). Manganese chloride modification of natural diatomite by using hydrothermal method. Journal of the Microscopy Society of Thailand, 24, 99–102.Google Scholar
  15. Pouran, S. R., Raman, A. A. A., & Daud, W. M. A. W. (2014). Journal of Cleaner Production, 64, 24–35.CrossRefGoogle Scholar
  16. PSOD-1 - Permanganate Soil Oxidant Demand - Screening Phase- ASTM Method (2006) Standard test method for determining the permanganate soil oxidant demand.Google Scholar
  17. Reza, A. P. S., Hasan, A. M., Ahmad, J. J., Zohreh, F., & Jafar, T. (2015). The effect of acid and thermal treatment on a natural diatomite. Chemistry Journal, 1(4), 144–150.Google Scholar
  18. Samarghandi, M. R., Mehralipour, J., Azarin, G., Godini, K., & Shabanlo, A. (2017). Decomposition of sodium dodecylbenzene sulfonate surfactant by electro/Fe2+-activated persulfate process from aqueous solutions. Global NEST Journal, 19(1), 115–121.Google Scholar
  19. Silva, C. K. O., Aguiar, L. G., Ciriaco, M. F., Vianna, M. M. G. R., Nascimento, C. A. O., Chiavone-Filho, O., Pereira, C. G., & Foletto, E. L. (2014). Remediation of solid matrix containing anthracene and phenanthrene by permanganate oxidant. Global NEST Journal, 16, 394–402.Google Scholar
  20. Silva, C. K. O., Vianna, M. M. G. R., Foletto, E. L., Chiavone-Filho, O., & Nascimento, C. A. O. (2015). Optimizing phenanthrene and anthracene oxidation by sodium persulfate and Fe-modified diatomite using the response surface method. Water, Air & Soil Pollution, 226(4), 1–11.CrossRefGoogle Scholar
  21. Silva-Rackov, C. K. O., Lawal, W. A., Nfodzo, P. A., Vianna, M. M. G. R., Nascimento, C. A. O., & Choi, H. (2016). Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite. Applied Catalysis B: Environmental, 192(5), 253–259.CrossRefGoogle Scholar
  22. Usman, M., Faura, P., Hanna, K., Abdelmoula, M., & Rubby, C. (2012). Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel, 96, 270–276.CrossRefGoogle Scholar
  23. Vianna, M. M. G. R., Dweck, J., Quina, F. H., Carvalho, F. M. S., & Nascimento, C. A. O. (2010a). Toluene and naphthalene sorption by iron oxide/clay composites. Part I. Materials characterization. Journal of Thermal Analysis and Calorimetry, 100, 889–896.CrossRefGoogle Scholar
  24. Vianna, M. M. G. R., Dweck, J., Quina, F. H., Carvalho, F. M. S., & Nascimento, C. A. O. (2010b). Toluene and naphthalene sorption by iron oxide/clay composites. Part II. Sorption experiments. Journal of Thermal Analysis and Calorimetry, 101, 887–892.CrossRefGoogle Scholar
  25. Xiong, W (2009) Development and application of ferrihydrite-modified diatomite and gypsum for phosphorus control in lakes and reservoirs. Thesis. Department of Civil and Geological Engineering. University of Saskatchewan.Google Scholar
  26. Xiong, W., & Peng, J. (2008). Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Research, 424(3), 4869–4877.CrossRefGoogle Scholar
  27. Yang, G. C. C., & Yeh, C. F. (2011). Enhanced nano-Fe3O4/S2O82 oxidation of trichloroethylene in a clayey soil by electrokinetics. Separation and Purification Technology. doi: 10.1016/j.seppur.2011.03.003.
  28. Zhaolun, W., Yuxiang, Y., Xuping, Q., Jianbo, Z., Yaru, C., & Linxi, N. (2005). Decolouring mechanism of zhejiang diatomite. Application to printing and dyeing wastewater. Environmental Chemistry Letter, 3, 33–37.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Celyna K. O. Silva-Rackov
    • 1
    • 2
  • Leandro G. Aguiar
    • 3
    Email author
  • Alessandra R. Souza
    • 2
  • Silvia S. O. Silva
    • 2
  • Alan G. Câmara
    • 2
  • Marilda M. G. R. Vianna
    • 1
  • Edson L. Foletto
    • 4
  • Claudio A. O. Nascimento
    • 1
  • Osvaldo Chiavone-Filho
    • 2
  1. 1.Department of Chemical EngineeringUniversity of Sao PauloSao PauloBrazil
  2. 2.Department of Chemical EngineeringFederal University of Rio Grande do NorteNatalBrazil
  3. 3.Department of Chemical Engineering, Engineering School of LorenaUniversity of São PauloLorenaBrazil
  4. 4.Department of Chemical EngineeringFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations