Genotoxicity in the Offspring of Rats Exposed to Contaminated and Acidified Experimentally Soils

  • Edariane Menestrino Garcia
  • Flávio Manoel Rodrigues da Silva Junior
  • Ronan Adler Tavella
  • Camila Gonzales Cruz
  • Paulo Roberto Martins Baisch
  • Ana Luiza Muccillo-Baisch


The aim of this study was to evaluate the genotoxic and mutagenic potential of contaminated soil diluted in acidic solutions and not acidic, in the offspring of rats exposed during pregnancy and neonatal periods. To this end, a comet assay and micronucleus test were performed. Soil samples were solubilized in the following three solvents: distilled water (control group), acid solvent at pH 5.2, and acid solvent at pH 3.6. Soil and solvent were mixed in a rate of 1:2 in g/mL, and hydrofluoric acid was used in the acid solvents. In the comet assay, the tail length, percentage of DNA within the tail and tail moment was analyzed in the whole blood of the pups that were studied. The number of micronuclei found in the bone marrow cells was counted in the micronucleus test. In all parameters evaluated in the comet assay, the group exposed to the lowest pH value when associated with contaminated soil (p < 0.05) had the most damage. However, the micronucleus test showed differences between all exposed groups and the control group (p < 0.05). These results reaffirm the health risks related to the exposure to soil contaminants.


Environmental exposure Reproduction Metals Comet assay Micronucleus test 


  1. Al-Saleh, I., Shinwari, N., Mashhour, A., Mohamed, G. E. D., & Rabah, A. (2011). Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. International Journal of Hygiene and Environmental Health, 214(2), 79–101.CrossRefGoogle Scholar
  2. Averbeck, D. (2000). Mécanismes de réparation et mutagenèse radio-induite chez les eucaryotes Supérieurs. Cancer/Radiother, 4, 335–354.CrossRefGoogle Scholar
  3. Barbosa, A. C., & Dórea, J. G. (1998). Indices of mercury contamination during breast feeding in the Amazon Basin. Environmental Toxicology and Pharmacology, 6, 71–79.CrossRefGoogle Scholar
  4. Chen, S., Zhang, X., Liu, Y., HU, Z., Shen, X., & Ren, J. (2014). Simulated acid rain changed the proportion of heterotrophic respiration in soil respiration in a subtropical secondary forest. Applied Soil Ecology, 86, 148–157.CrossRefGoogle Scholar
  5. Da Silva-Junior, F. M. R., & Vargas, V. M. F. (2009). Using the salmonella assay to delineate the dispersion routes of mutagenic compounds from coal wastes in contaminated soil. Mutation Research, 673, 116–123.CrossRefGoogle Scholar
  6. Da Silva-Júnior, F. M. R., Rocha, J. A. V., & Vargas, V. M. F. (2009). Extraction parameters in the mutagenicity assay of soil samples. Science Total Environmental, 427, 6017–6023.CrossRefGoogle Scholar
  7. Da Silva-Júnior, F. M. R., Silva, P. F., Garcia, E. M., Klein, R. D., Peraza-Cardoso, G., Baisch, P. R., Vargas, V. M. F., & Muccillo-Baisch, A. L. (2013). Toxic effects of the ingestion of water-soluble elements found in soil under the atmospheric influence of an industrial complex. Environmental Geochemistry and Health, 35, 317–331.CrossRefGoogle Scholar
  8. Da Silva-Júnior, F. M. R., Garcia, E. M., & Muccillo-Baisch, A. L. (2014). Acute toxicity of soil samples under the atmospheric inflence of an industrial complex using Swiss mice. Ecotoxicology Environmental Contamination, 9, 29–31.CrossRefGoogle Scholar
  9. Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3–11.CrossRefGoogle Scholar
  10. Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience, 51(3), 180–198.CrossRefGoogle Scholar
  11. EPA, U.S. Environmental Protection Agency (EPA) (2011). Exposure factors handbook: 2011 edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F., 2011, Accessed 30 Nov 2014.
  12. Fenech, M., Holland, N., Chang, W. P., Zeiger, E., & Bonassi, S. (1999). Show more the human micronucleus project—an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutation Research, 428, 271–283.CrossRefGoogle Scholar
  13. Garcia, E. M., da Silva Junior, F. M. R., Soares, M. C. F., & Muccillo-Baisch, A. L. (2015). Developmental effects of parental exposure to soil contaminated with urban metals. Science of the Total Environment, 520, 206–212.CrossRefGoogle Scholar
  14. Garcia, E. M., da Silva Junior, F. M. R., & Muccillo-Baisch, A. L. (2016). Mutagenic effect of contaminated soil on the offspring of exposed rats. Acta Scientiarum. Health Sciences, 38(1), 19–22.Google Scholar
  15. Glanz, J. T. (1995). Saving our soil: solutions for sustaining earth’s vital resource. USA: Joh. Bo.Google Scholar
  16. Gustavino, B., Buschini, A., Monfrinotti, M., Rizzoni, M., Tancioni, L., Poli, P., & Rossi, C. (2005). Modulating effects of humic acids on genotoxicity induced by water disinfectants in Cyprinus carpio. Mutation Research, 587, 103–113.CrossRefGoogle Scholar
  17. Iarmarcovai, G., Ceppi, M., Botta, A., Orsière, T., & Bonassi, S. (2008). Micronuclei frequency in peripheral blood lymphocytes of cancer patients: a meta analysis. Mutation Research, 659, 274–283.CrossRefGoogle Scholar
  18. Kuriwaki, J. I., Nishijo, M., Honda, R., Tawara, K., Nakagawa, H., Hori, E., & Nishijo, H. (2005). Effects of cadmium exposure during pregnancy on trace elements in fetal rat liver and kidney. Toxicology Letters, 156(3), 369–376.CrossRefGoogle Scholar
  19. Lucio-Neto, M.P. (2011). Avaliação tóxica, citotóxica, genotóxica e mutagênica do composto 3-(2-Cloro-6-Fluorobenzil)-Imidazolidina-2,4-Diona em células eucarióticas. MSc Dissertation. Federal University of Piauí, Teresina.Google Scholar
  20. Mirlean, N., Vanz, A., & Baisch, P. (2000). Níveis e origem da acidificação das chuvas na região do Rio Grande. Química Nova, 23(5), 590–593.CrossRefGoogle Scholar
  21. Monarca, S. (2002). Soil contamination detected using bacterial and plant mutagenicity tests and chemical analyses. Environmental Research, 88, 64–69.CrossRefGoogle Scholar
  22. Muccillo-Baisch, A. L., Mirlean, N., Carrazzoni, D., Soares, M. C. F., Goulart, G. P., & Baisch, P. (2011). Health effects of ingestion of mercury-polluted urban soil: an animal experiment. Environmental Geochemistry and Health, 33, 1–11.Google Scholar
  23. Nowak, M. A., Komarova, N. L., Sengupta, A., Jallepalli, P. V., Shih, I. M., Vogelstein, B., & Lengauer, C. (2002). The role of chromosomal instability in tumor initiation. Proceedings of the National Academy of the United States of America, 99(25), 16226–16231.CrossRefGoogle Scholar
  24. Oliveira, C. S., Oliveira, V. A., Ineu, R. P., Moraes-Silva, L., & Pereira, M. E. (2012). Biochemical parameters of pregnant rats and their offspring exposed to different doses of inorganic mercury in drinking water. Food and Chemical Toxicology, 50(7), 2382–2387.CrossRefGoogle Scholar
  25. Pohren, R. S., Rocha, J. A. V., Leal, K. A., & Vargas, V. M. F. (2012). Soil mutagenicity as a strategy to evaluate environmental and health risks in acontaminated area. Environment International, 44, 40–52.CrossRefGoogle Scholar
  26. Pueyo, M., Sastre, J., Hernandez, E., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2003). Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Enviornmental Quality, 32, 2054–2066.CrossRefGoogle Scholar
  27. Ribeiro, L. R., Salvadori, D. M. F., & Marques, E. K. (2003). Mutagênese ambiental. Canoas: Ulbra.Google Scholar
  28. Singh, H., et al. (1988). Isolation by screening of an expression library with a recognition site DNA. Cell Press, 52, 415–423.Google Scholar
  29. Steinert, S. A., Montee, R. S., Leather, J. M., & Chadwick, D. B. (1998). DNA damage in mussels at sites in San Diego Bay. Mutation Research, 399, 65–85.CrossRefGoogle Scholar
  30. Stevens, C. J., Dise, N. B., & Gowing, D. J. (2009). Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environmental Pollution, 157, 313–319.CrossRefGoogle Scholar
  31. Zenick, H., & Clegg, E. D. (1989). Assessment of male reproductive toxicity. A risk assessment approach. In W. Hayes (Ed.), Principles and methods of Toxicology (pp. 275–309). New York: Raven Press.Google Scholar
  32. Zhang, J.-E., Ouyang, Y., & Ling, D. J. (2007). Impacts of simulated acid rain on cation leaching from the latosol in south China. Chemosphere, 67, 2131–2137.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edariane Menestrino Garcia
    • 1
  • Flávio Manoel Rodrigues da Silva Junior
    • 1
  • Ronan Adler Tavella
    • 1
  • Camila Gonzales Cruz
    • 1
  • Paulo Roberto Martins Baisch
    • 2
  • Ana Luiza Muccillo-Baisch
    • 1
  1. 1.Instituto de Ciências Biológicas (ICB), Laboratório de Ensaios Farmacológicos e Toxicológicos (LEFT), Programa de Pós-Graduação em Ciências da SaúdeUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Instituto de Oceanografia (IO), Laboratório Oceanografia Geológica (LOG), Programa de Pós-Graduação em Oceanografia Química, Física e GeológicaUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil

Personalised recommendations