Skip to main content

Advertisement

Log in

A Dialogue on Perspectives of Biochar Applications and Its Environmental Risks

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochar presents great promise as a technology that makes a substantial contribution in various fields of environmental research. However, existing knowledge is still uneven and limited in terms of its effective utilization and field application. In this review, a comprehensive discussionof biochar technology is presentedwith respect to three main aspects:(1) biochar stability; (2) application in soil for conditioning, remediation, and GHG reduction; and (3) biochar sustainability and its environmental impacts. Biochar is a highly stable and slow-mineralizing product; therefore, its application promotes agricultural productivity by providingan efficient nutrient balance and soil fertility, and by restricting the loss of nutrients due to its surface sorption capacity. Moreover, it contributes significantly to the reduction of greenhouse gas emissions from the soil through carbon sequestration. The high adsorption capacity of biochar aids in removing contaminants from soil, thus assisting in the restoration of contaminated sites.Nevertheless, biochar poses certain negative impacts to the environment as well. A few studies have reported that biochar could release organic and inorganic contaminants such as phenol, PAHs, POPs, dioxins, furans, and heavy metals into the soil, altering the soil productivity and soil biota. In certain circumstances, biochar is also responsible for emission of CO2 from soil due to the priming effect. However, the effect of biochar in soil varies widely depending upon ecological conditions, the pyrolysis process, and the feedstock materials. Overall, this review aims to help in evaluating and addressing the mechanistic understanding of biochar functions in the environment and encouraging awareness of the need forfuture research to counteract its negative environmental consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CEC:

Cation exchange capacity

CH4 :

Methane

CO2 :

Carbon dioxide

GHGs:

Greenhouse gases

N2O:

Nitrous oxide

O/C:

Oxygen to carbon ratio

OC:

Organic carbon

OM:

Organic matter

PAHs:

Polycyclic aromatic hydrocarbons

PCDDs:

Polychlorinated dibenzo dioxins

POPs:

Persistent organic pollutants

PVC:

Polyvinyl chloride

VOCs:

Volatile organic compounds

References

  • Abdel-Fattah, T. M., Mahmoud, M. E., Ahmed, S. B., Huff, M. D., Lee, J. W., & Kumar, S. (2015). Biochar from woody biomass for removing metal contaminants and carbon sequestration. Journal of Industrial and Engineering Chemistry, 22, 103–109.

    Article  CAS  Google Scholar 

  • Abdelhafez, A. A., Li, J., & Abbas, M. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66–71.

  • Abu, E.-R. Z., Bramer, E. A., & Brem, G. (2008). Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel, 87, 2243–2252.

    Article  CAS  Google Scholar 

  • Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. (2016). Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98, 243–253.

    Article  Google Scholar 

  • Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306.

  • Ahmad, M., Usman, A. R., Lee, S. S., Kim, S. C., Joo, J. H., Yang, J. E., & Ok, Y. S. (2012). Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. Journal of Industrial and Engineering Chemistry, 18(1), 198–204.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Ajayi, A. E., & Horn, R. (2016). Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil and Tillage Research, 164, 34–44.

    Article  Google Scholar 

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. BioresourceTechnology, 131, 374–379.

    Article  CAS  Google Scholar 

  • Ameloot, N., Graber, E. R., Verheijen, F. G., & De Neve, S. (2013). Interactions between biochar stability and soil organisms: review and research needs. European Journal of Soil Science, 64(4), 379–390.

    Article  CAS  Google Scholar 

  • Amonette,J. E., Dai, S. S., Hu, Y., Schlekewey, N., Shaff, Z., Russell, C. K., Burton, S. D.Arey, B. W. (2008). An exploration of the physico-chemical diversity of a suite of biochars. Eos Transactions AGU, 89, (53): Fall Meeting Supplement, Abstract B31G-0379.

  • Anjum, M., Miandad, R., Waqas, M., Ahmad, I., Alafif, Z. O. A., Aburiazaiza, A. S., Barakat, M. A., & Akhtar, T. (2016). Solid waste management in Saudi Arabia: a review. Journal of Applied Agriculture and Biotechnology, 1, 13–26.

    Google Scholar 

  • Asai, H., Samson, B. K., Haefele, S. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf spad and grain yield. Field Crops Research, 111, 81–84.

    Article  Google Scholar 

  • Baldock, J. A., & Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Organic Geochemistry, 33, 1093–1109.

  • Bannon, D. I., Drexler, J. W., Fent, G. M., Casteel, S. W., Hunter, P. J., Brattin, W. J., & Major, M. A. (2009). Evaluation of small arms range soils for metal contamination and lead bioavailability. Environmental Science and Technology, 43(24), 9071–9076.

    Article  CAS  Google Scholar 

  • Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy, 5(2), 132–143.

    Article  CAS  Google Scholar 

  • Batool, A., Taj, S., Rashid, A., Khalid, A., Qadeer, S., Saleem, A. R., & Ghufran, M. A. (2015). Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science, 6, 733.

    Article  Google Scholar 

  • Beesley, L., & Dickinson, N. (2011). Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biology and Biochemistry, 43(1), 188–196.

    Article  CAS  Google Scholar 

  • Beesley, L., Marmiroli, M., Pagano, L., Pigoni, V., Fellet, G., Fresno, T., Vamerali, T., Bandiera, M., & Marmiroli, N. (2013). Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.) Science of the Total Environment, 454, 598–603.

  • Bell, M. J., & Worrall, F. (2011). Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits? Science of the Total Environment, 409(9), 1704–1714.

    Article  CAS  Google Scholar 

  • Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28(3), 386–396.

    Article  CAS  Google Scholar 

  • Brennan, A., Jiménez, E. M., Alburquerque, J. A., Knapp, C. W., & Switzer, C. (2014). Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution, 193, 79–87.

  • Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C., & Ball, W. P. (2006). Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry, 37(3), 321–333.

    Article  CAS  Google Scholar 

  • Brownsort, P. A. (2009). Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits. Edinburgh: University of Edinburgh.

    Google Scholar 

  • Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., & Dam-Johansen, K. (2011). Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy, 35(3), 1182–1189.

    Article  CAS  Google Scholar 

  • Bruun, S., Jensen, E. S., & Jensen, L. S. (2008). Microbial mineralization and assimilation af black carbon: dependency on degree of thermal alteration. Organic Geochemistry, 39(7), 839–845.

    Article  CAS  Google Scholar 

  • Bruun, S., El-Zahery, T., & Jensen, L. (2009). Carbon sequestration with biochar—stability and effect on decomposition of soil organic matter. In IOP Conference Series: Earth and Environmental Science, 6(24), 242010. doi:10.1088/1755-1307/6/4/242010.

  • Buss, W., Graham, M. C., Shepherd, J. G., & Mašek, O. (2016). Risks and benefits of marginal biomass-derived biochars for plant growth. Science of the Total Environment, 569, 496–506.

    Article  CAS  Google Scholar 

  • Cao, B., Nagarajan, K., & Loh, K. C. (2009). Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology, 85(2), 207–228.

    Article  CAS  Google Scholar 

  • Case, S. D., McNamara, N. P., Reay, D. S., & Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—the role of soil aeration. Soil Biology and Biochemistry, 51, 125–134.

    Article  CAS  Google Scholar 

  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437–444.

    Article  Google Scholar 

  • Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., & Fuhrmann, J. J. (2017). Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Science of the Total Environment, 574, 24–33.

    Article  CAS  Google Scholar 

  • Cheng, C. H., & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021–1027.

    Article  CAS  Google Scholar 

  • Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37(11), 1477–1488.

    Article  CAS  Google Scholar 

  • Cheng, C. H., Lehmann, J., Thies, J. E., & Burton, S. D. (2008). Stability of black carbon in soils across a climatic gradient. Journal of Geophysical Research-Biogeosciences, 113(G2). doi:10.1029/2007JG000642.

  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, Article ID752708, 12 pages. doi:10.1155/2014/752708.

  • Cowie, A. L., Downie, A. E., George, B. H., Singh, B. P., Van Zwieten, L., & O'Connell, D. (2012). Is sustainability certification for biochar the answer to environmental risks? Pesquisa Agropecuária Brasileira, 47(5), 637–648.

    Article  Google Scholar 

  • DeGryze, S., Cullen, M., Durschinger, L., Lehmann, J., Bluhm, D.,Six, J. (2010). Evaluation of the opportunities for generating carbon offsets from soil sequestration of biochar. An Issues Paper Commissioned by the Climate Action Reserve, Final Version.

  • DeLuca, T. H., & Sala, A. (2006). Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest. Ecology, 87(10), 2511–2522.

    Article  Google Scholar 

  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248.

    Article  CAS  Google Scholar 

  • Denyes, M. J., Langlois, V. S., Rutter, A., & Zeeb, B. A. (2012). The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Science of the Total Environment, 437, 76–82.

  • Dutta, T., Kwon, E., Bhattacharya, S. S., Jeon, B. H., Deep, A., Uchimiya, M., & Kim, K. H. (2016). Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review. GCB Bioenergy. doi:10.1111/gcbb.12363.

  • Eberhardt, T. L., Min, S. H., & Han, J. S. (2006). Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride. Bioresource Technology, 97(18), 2371–2376.

    Article  CAS  Google Scholar 

  • Endlweber, K., & Scheu, S. (2006). Effects of Collembola on root properties of two competing ruderal plant species. Soil Biology and Biochemistry, 38(8), 2025–2031.

    Article  CAS  Google Scholar 

  • Fabbri, D., Torri, C., & Spokas, K. A. (2012). Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production. Journal of Analytical and Applied Pyrolysis, 93, 77–84.

  • Fang, Y., Singh, B., & Singh, B. P. (2015). Effect of temperature on biochar priming effects and its stability in soils. Soil Biology and Biochemistry, 80, 136–145.

    Article  CAS  Google Scholar 

  • Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., Hall, P. A., & Baldock, J. A. (2013). Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 465, 288–297.

    Article  CAS  Google Scholar 

  • Fukami, T., Dickie, I. A., Paula Wilkie, J., Paulus, B. C., Park, D., Roberts, A., & Allen, R. B. (2010). Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters, 13(6), 675–684.

    Article  Google Scholar 

  • Garcia-Perez, M. (2008). The formation of polyaromatic hydrocarbons and dioxins during pyrolysis: a review of the literature with descriptions of biomass composition, fast pyrolysis technologies and thermochemical reactions. Pullman: Washington State University.

    Google Scholar 

  • Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623–633.

    Article  CAS  Google Scholar 

  • Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88(1), 37–41.

    Article  CAS  Google Scholar 

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biology and Fertility of Soils, 35(4), 219–230.

    Article  CAS  Google Scholar 

  • Glaser, L. A., Paulson, A. T., Speers, R. A., Yada, R. Y., & Rousseau, D. (2007). Foaming behavior of mixed bovine serum albumin–protamine systems. Food Hydrocolloids, 21(4), 495–506.

    Article  CAS  Google Scholar 

  • Gomez, J. D., Denef, K., Stewart, C. E., Zheng, J., & Cotrufo, M. F. (2014). Biochar addition rate influences soil microbial abundance and activity in temperate soils. European Journal of Soil Science, 65(1), 28–39.

    Article  CAS  Google Scholar 

  • Gomez-Eyles, J. L., Sizmur, T., Collins, C. D., & Hodson, M. E. (2011). Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution, 159(2), 616–622.

  • Gundale, M. J., & DeLuca, T. H. (2006). Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem. Forest Ecology and Management, 231, 86–93.

    Article  Google Scholar 

  • Haefele, S. M., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A. A., Pfeiffer, E. M., & Knoblauch, C. (2011). Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121(3), 430–440.

    Article  Google Scholar 

  • Hagner, M., Kemppainen, R., Jauhiainen, L., Tiilikkala, K., & Setälä, H. (2016). The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil and Tillage Research, 163, 224–234.

    Article  Google Scholar 

  • Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma, V., & Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology, 46(5), 2830–2838.

    Article  CAS  Google Scholar 

  • Hamer, U., Marschner, B., Brodowski, S., & Amelung, W. (2004). Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry, 35(7), 823–830.

    Article  CAS  Google Scholar 

  • Hansen, V., Müller-Stöver, D., Munkholm, L. J., Peltre, C., Hauggaard-Nielsen, H., & Jensen, L. S. (2016). The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study. Geoderma, 269, 99–107.

  • Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209, 188–197.

    Article  CAS  Google Scholar 

  • Hernandez-Soriano, M. C., Kerré, B., Kopittke, P. M., Horemans, B., & Smolders, E. (2016). Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Scientific Reports, 6, 25127.

    Article  CAS  Google Scholar 

  • Hilber, I., Blum, F., Leifeld, J., Schmidt, H. P., & Bucheli, T. D. (2012). Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. Journal of Agricultural and Food Chemistry, 60, 3042–3050.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457.

    Article  CAS  Google Scholar 

  • Hwang, I. H., Nakajima, D., Matsuto, T., & Sugimoto, T. (2008). Improving the quality of waste-derived char by removing ash. Waste Management, 28(2), 424–434.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.

    Article  CAS  Google Scholar 

  • Jadia, C. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: recent techniques. African Journal of Biotechnology, 8(6).

  • Jeffery, S., Bezemer, T. M., Cornelissen, G., Kuyper, T. W., Lehmann, J., Mommer, L., & Groenigen, J. W. (2015). The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy, 7(1), 1–13.

    Article  CAS  Google Scholar 

  • Jin, H., Hanif, M. U., Capareda, S., Chang, Z., Huang, H., & Ai, Y. (2016). Copper (II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 4(1), 365–372.

  • Jones, D. L., Murphy, D. V., Khalid, M., Ahmad, W., Edwards-Jones, G., & DeLuca, T. H. (2011). Short-term biochar induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry, 43(8), 1723–1731.

    Article  CAS  Google Scholar 

  • Jung, K. W., Kim, K., Jeong, T. U., & Ahn, K. H. (2016). Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresource Technology, 200, 1024–1028.

    Article  CAS  Google Scholar 

  • Kaal, J., Cortizas, A. M., & Nierop, K. G. (2009). Characterisation of aged charcoal using acoil probe pyrolysis-GC/MS method optimised for black carbon. Journal of Analytical and Applied Pyrolysis, 85(1), 408–416.

    Article  CAS  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4), 1247–1253.

    Article  CAS  Google Scholar 

  • Keiluweit, M., Kleber, M., Sparrow, M. A., Simoneit, B. R., & Prahl, F. G. (2012). Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environmental Science & Technology, 46(17), 9333–9341.

    Article  CAS  Google Scholar 

  • Khan, S., Wang, N., Reid, B. J., Freddo, A., & Cai, C. (2013). Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental Pollution, 175, 64–68.

    Article  CAS  Google Scholar 

  • Khan, S., Waqas, M., Ding, F., Shamshad, I., Arp, H. P. H., & Li, G. (2015). The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.) Journal of Hazardous Materials, 300, 243–253.

    Article  CAS  Google Scholar 

  • Khan, T. F., Ahmed, M. M., & Huq, S. M. I. (2014). Effects of biochar on the abundance of three agriculturally important soil bacteria. Journal of Agricultural Chemistry and Environment, 3(02), 31.

    Article  CAS  Google Scholar 

  • Kim, J. S., Sparovek, G., Longo, R. M., De Melo, W. J., & Crowley, D. (2007). Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biology and Biochemistry, 39(2), 684–690.

    Article  CAS  Google Scholar 

  • Kimetu, J. M., & Lehmann, J. (2010). Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Research, 48(7), 577–585.

    Article  CAS  Google Scholar 

  • Klasson, K. T., Wartelle, L. H., Rodgers, J. E., & Lima, I. M. (2009). Copper (II) adsorption by activated carbons from pecan shells: effect of oxygen level during activation. Industrial Crops and Products, 30(1), 72–77.

    Article  CAS  Google Scholar 

  • Kołtowski, M., & Oleszczuk, P. (2015). Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecological Engineering, 75, 79–85.

    Article  Google Scholar 

  • Kołtowski, M., Hilber, I., Bucheli, T. D., & Oleszczuk, P. (2016). Effect of steam activated biochar application to industrially contaminated soils on bioavailability of polycyclic aromatic hydrocarbons and ecotoxicity of soils. Science of the Total Environment, 23(11), 11058–11056.

    Google Scholar 

  • Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112(112), 103–143.

    Article  CAS  Google Scholar 

  • Krishnan, K. A., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152(2), 527–535.

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environment International, 87, 1–12.

    Article  CAS  Google Scholar 

  • Kusmierz, M., Oleszczuk, P., Kraska, P., Pałys, E., & Andruszczak, S. (2016). Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere, 146, 272–279.

    Article  CAS  Google Scholar 

  • Kuzyakov, Y., Friedel, J. K., & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32(11), 1485–1498.

    Article  CAS  Google Scholar 

  • Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., & Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41(2), 210–219.

    Article  CAS  Google Scholar 

  • Lai, W. Y., Lai, C. M., Ke, G. R., Chung, R. S., Chen, C. T., Cheng, C. H., Pai, C. W., Chen, S. Y., & Chen, C. C. (2013). The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. Journal of the Taiwan Institute of Chemical Engineers, 44(6), 1039–1044.

  • Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B. & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3), 443–449.

  • Laird, D. A. (2008). The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100(1), 178–181.

    Article  Google Scholar 

  • Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan Iii, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science & Technology, 44(20), 7970–7974.

    Article  CAS  Google Scholar 

  • Lee, S. J., Park, J. H., Ahn, Y. T., & Chung, J. W. (2015). Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions. Water, Air, & Soil Pollution, 226(2), 9.

  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381–387.

    Article  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: an introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management (pp. 1–12). London: Science and Technology. Earthscan.

    Google Scholar 

  • Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizao, F., Kinyangi, J., & Jacobsen, C. (2005). Near-edge Xray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biogeochemical Cycles, 19(1), GB1013.

  • Lehmann, J., Czimczik, C., Laird, D., & Sohi, S. (2009). Stability of biochar in soil. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: science and technology (pp. 183–205). London: Earthscan.

    Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    Article  CAS  Google Scholar 

  • Li, H., Ye, X., Geng, Z., Zhou, H., Guo, X., Zhang, Y., & Wang, G. (2016). The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Journal of Hazardous Materials, 304, 40–48.

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., & Wirick, S. (2008). Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta, 72(24), 6069–6078.

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Sohi, S. P., Thies, J. E., O’Neill, B., Trujillo, L., & Luizao, F. J. (2010). Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 41(2), 206–213.

    Article  CAS  Google Scholar 

  • Liang, C., Gascó, G., Fu, S., Méndez, A., & Paz-Ferreiro, J. (2016). Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil and Tillage Research., 164(2016), 3–10.

    Article  Google Scholar 

  • Liesch, A. M., Weyers, S. L., Gaskin, J. W., & Das, K. C. (2010). Impact of two different biochars on earthworm growth and survival. Annals of Environmental Science, 4(1), 1–9.

    CAS  Google Scholar 

  • Lievens, C., Carleer, R., Cornelissen, T., & Yperman, J. (2009). Fast pyrolysis of heavy metal contaminated willow: influence of the plant part. Fuel, 88(8), 1417–1425.

    Article  CAS  Google Scholar 

  • Liu, L., Chen, P., Sun, M., Shen, G., & Shang, G. (2015). Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil. Journal of Soils and Sediments, 15(2), 313–322.

    Article  CAS  Google Scholar 

  • Liu, T., Liu, B., & Zhang, W. (2014). Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment. Polish Journal of Environmental Studies, 23, 271–275.

    CAS  Google Scholar 

  • Liu, X. H., & Zhang, X. C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. International Journal of Agriculture and Biology, 14(5), 745–750.

  • Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging. Water, Air, & Soil Pollution, 226(5), 164. doi:10.1007/s11270-015-2401-y.

  • Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., & Liu, D. (2016). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management. doi:10.1016/j.jenvman.2016.05.068.

  • Lu, W., Ding, W., Zhang, J., Li, Y., Luo, J., Bolan, N., & Xie, Z. (2014). Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biology and Biochemistry, 76, 12–21.

    Article  CAS  Google Scholar 

  • Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., & Brookes, P. C. (2011). Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry, 43(11), 2304–2314.

  • Lyu, H., He, Y., Tang, J., Hecker, M., Liu, Q., Jones, P. D., & Giesy, J. P. (2016). Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution, 218, 1–7.

    Article  CAS  Google Scholar 

  • Major, J. (2010). Biochar recalcitrance in soil. IBI Research Summary. International Biochar Initiative. Available online at http://www.biochar. international. org/sites/default/files/IBI. RS.recalcitrance, 2.

  • Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition after 4 years of doing biochar application to a Colombian savanna oxisol. Plant and Soil, 333, 117–128.

  • Marguerie, D., & Hunot, J. Y. (2007). Charcoal analysis and dendrology: data from archaeological sites in north-western France. Journal of Archaeological Science, 34(9), 1417–1433.

    Article  Google Scholar 

  • Masto, R. E., Kumar, S., Rout, T. K., Sarkar, P., George, J., & Ram, L. C. (2013). Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111, 64–71.

  • McBeath, A. V., Wurster, C. M., & Bird, M. I. (2015). Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass and Bioenergy, 73, 155–173.

  • McElligott, K. M. (2011) Biochar amendments to forest soils: effects on soil properties and tree growth. MS Thesis, University of Idaho, Moscow.

  • McGrath, T., Sharma, R., & Hajaligol, M. (2001). An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel, 80(12), 1787–1797.

    Article  CAS  Google Scholar 

  • McGrath, T. E., Chan, W. G., & Hajaligol, M. R. (2003). Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66(1), 51–70.

    Article  CAS  Google Scholar 

  • McGrath, T. E., Wooten, J. B., Chan, W. G., & Hajaligol, M. R. (2007). Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation. Food and Chemical Toxicology, 45(6), 1039–1050.

    Article  CAS  Google Scholar 

  • McHenry, M. P. (2009). Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty and risk. Agriculture, Ecosystems & Environment, 129(1), 1–7.

    Article  CAS  Google Scholar 

  • Mehta, V., & Chavan, A. (2009). Physico-chemical treatment of tar-containing wastewater generated from biomass gasification plants. World Academy of Science, Engineering and Technology, 57, 161–168.

    Google Scholar 

  • Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental Science & Technology, 45(22), 9473–9483.

    Article  CAS  Google Scholar 

  • Mishra, A. K., Singh, R. N., & Mishra, P. P. (2015). Effect of biomass gasification on environment. Atmosphere, 18, 19.

    Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresource Technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Molnar, M., Vaszita, E., Farkas, É., Ujaczki, É., Fekete-Kertész, I., Tolner, M., & Feigl, V. (2016). Acidic sandy soil improvement with biochar—a microcosm study. Science of the Total Environment, 563, 855–865.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339.

    Article  Google Scholar 

  • Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment, 487, 26–36.

    Article  CAS  Google Scholar 

  • Mukome, F. N., Six, J., & Parikh, S. J. (2013). The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma, 200, 90–98.

    Article  CAS  Google Scholar 

  • Nakajima, D., Nagame, S., Kuramochi, H., Sugita, K., Kageyama, S., Shiozaki, T., & Goto, S. (2007). Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood. Bulletin of Environmental Contamination and Toxicology, 79(2), 221–225.

    Article  CAS  Google Scholar 

  • Nguyen, B. T., & Lehmann, J. (2009). Black carbon decomposition under varying water regimes. Organic Geochemistry, 40(8), 846–853.

    Article  CAS  Google Scholar 

  • Nietschke, L., Burfeindt, I., Seupt, A., & Filser, J. (2011). Collembola and seed germination: relevance of substrate quality and evidence for seed attack. Soil Org, 83, 451–462.

    Google Scholar 

  • Nishio, M., & Okano, S. (1991). Stimulation of the growth of alfalfa and infection of roots with indigenous vesicular–arbuscular mycorrhizal fungi by the application of charcoal. National Grassland Research Institute, 45, 61–71.

  • Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. (2009). Impact of biochar amendment on fertility of asoutheastern coastal plain soil. Soil Science, 174(2), 105–112.

    Article  CAS  Google Scholar 

  • Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A., & Niandou, M. A. (2010). Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154(3), 281–288.

    Article  CAS  Google Scholar 

  • O’neill, B., Grossman, J., Tsai, M. T., Gomes, J. E., Lehmann, J., Peterson, J., & Thies, J. E. (2009). Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology, 58(1), 23–35.

    Article  Google Scholar 

  • Oancea, S., Foca, N., & Airinei, A. (2005). Effects of heavy metals on plant growth and photosynthetic activity. Analele Univ. Al. I. Cuza, 1, 107–110.

    CAS  Google Scholar 

  • Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., & Børresen, T. (2016). In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35–44.

    Article  Google Scholar 

  • Ohsowski, B. M., Klironomos, J. N., Dunfield, K. E., & Hart, M. M. (2012). The potential of soil amendments for restoring severely disturbed grasslands. Applied Soil Ecology, 60, 77–83.

    Article  Google Scholar 

  • Oleszczuk, P., Jośko, I., & Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials, 260, 375–382.

    Article  CAS  Google Scholar 

  • Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34.

    Article  CAS  Google Scholar 

  • Osipovs, S. (2009). Use of two different adsorbents for sampling tar in gas obtained from peat gasification. International Journal of Environmental and Analytical Chemistry, 89(8–12), 871–880.

    Article  CAS  Google Scholar 

  • Oviedo, J., & Sanz, J. F. (2005). TiO2 (110) from dynamic first principle calculations. The Journal of Physical Chemistry. B, 109, 16223–16226.

    Article  CAS  Google Scholar 

  • Ozcimen, D., & Karaosmanoglu, F. (2004). Production and characterization of bio-oil and bio-char from rapeseed cake. Renewable Energy, 29, 779–787.

  • Peckyte, J., & Baltrenaite, E. (2015). Assessment of heavy metals leaching from (bio) char obtained from industrial sewage sludge. Science–Future of Lithuania/Mokslas–Lietuvos Ateitis, 7(4), 399–406.

    Article  Google Scholar 

  • Peng, P., Lang, Y. H., & Wang, X. M. (2016). Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecological Engineering, 90, 225–233.

    Article  Google Scholar 

  • Peng, X., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 112(2), 159–166.

    Article  Google Scholar 

  • Pietikainen, J., Kiikkila, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231–242.

    Article  CAS  Google Scholar 

  • Prabhansu, Karmakar, M. K., Chandra, P., & Chatterjee, P. K. (2015). A review on the fuel gas cleaning technologies in gasification process. Journal of Environmental Chemical Engineering, 3(2), 689–702.

  • Pratt, K., & Moran, D. (2010). Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass and Bioenergy, 34(8), 1149–1158.

    Article  CAS  Google Scholar 

  • Preston, C. M., & Schmidt, M. W. I. (2006). Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences, 3(4), 397–420.

    Article  CAS  Google Scholar 

  • Qadeer, S., Batool, A., Rashid, A., Khalid, A., Samad, N., & Ghufran, M. A. (2014). Effectiveness of biochar in soil conditioning under simulated ecological conditions. Soil & Environment, 33(2), 149–158.

    Google Scholar 

  • Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., & Huhnke, R. L. (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6(8), 3972–3986.

    Article  CAS  Google Scholar 

  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064.

    Article  CAS  Google Scholar 

  • Qin, G., Gong, D., & Fan, M. Y. (2013). Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. International Biodeterioration & Biodegradation, 85, 150–155.

    Article  CAS  Google Scholar 

  • Rai, S. B., Khalid, A., Qadeer, S., Mahmood, S., & Aziz, I. (2016). Reduction in phytotoxicity of chromium using ACC-deaminase containing bacteria. Soil and Environment, 35, 155–160.

    Google Scholar 

  • Reibe, K., Gotz, K. P., Rob, C. L., Doring, T. F., Ellmer, F., & Ruess, L. (2015). Impact of quality and quantity of biochar and hydrochar on soil Collembola and growth of spring wheat. Soil Biology and Biochemistry, 83, 84–87.

    Article  CAS  Google Scholar 

  • Ren, X., Sun, H., Wang, F., & Cao, F. (2016). The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months. Chemosphere, 144, 2257–2263.

    Article  CAS  Google Scholar 

  • Rombola, A. G., Marisi, G., Torri, C., Fabbri, D., Buscaroli, A., Ghidotti, M., & Hornung, A. (2015). Relationships between chemical characteristics and phytotoxicity of biochar from poultry litter pyrolysis. Journal of Agricultural and Food Chemistry, 63(30), 6660–6667.

    Article  CAS  Google Scholar 

  • Rondon, M., Ramirez, A., & Hurtado, M. (2004). Charcoal additions to high fertility ditches enhance yields and quality of cash crops in Andean hillsides of Colombia. Colombia: CIAT Annual Report Cali.

    Google Scholar 

  • Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699–708.

    Article  Google Scholar 

  • Scheer, C., Grace, P. R., Rowlings, D. W., Kimber, S., & Van Zwieten, L. (2011). Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345(1–2), 47–58.

    Article  CAS  Google Scholar 

  • Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., & Kammann, C. (2014). Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment, 191, 39–52.

  • Schmidt, M. W., & Noack, A. G. (2000). Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3), 777–793.

    Article  CAS  Google Scholar 

  • Sheng, Y., Zhan, Y., & Zhu, L. (2016). Reduced carbon sequestration potential of biochar in acidic soil. Science of the Total Environment, 572, 129–137.

    Article  CAS  Google Scholar 

  • Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L., & Kathuria, A. (2010). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 39(4), 1224–1235.

    Article  CAS  Google Scholar 

  • Smith, J. L., Collins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology and Biochemistry, 42(12), 2345–2347.

    Article  CAS  Google Scholar 

  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.

    Article  CAS  Google Scholar 

  • Soinne, H., Hovi, J., Tammeorg, P., & Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 219, 162–167.

    Article  CAS  Google Scholar 

  • Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74(1), 65–105.

    Article  Google Scholar 

  • Sombroek, W., Ruivo, M. D. L., Fearnside, P. M., Glaser, B., Lehmann, J. (2003). Amazonian dark earths as carbon stores and sinks. In Amazonian dark earths (pp. 125–139). Springer Netherlands.

  • Song, Y., Wang, F., Bian, Y., Kengara, F. O., Jia, M., Xie, Z., & Jiang, X. (2012). Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. Journal of Hazardous Materials, 217, 391–397.

  • Spokas, A. K., & Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science, 3, 179–193.

    CAS  Google Scholar 

  • Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1(2), 289–303.

    Article  CAS  Google Scholar 

  • Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of wood chip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581.

    Article  CAS  Google Scholar 

  • Stefaniuk, M., Oleszczuk, P., & Bartminski, P. (2016). Chemical and ecotoxicological evaluation of biochar produced from residues of biogas production. Journal of Hazardous Materials, 318, 417–424.

    Article  CAS  Google Scholar 

  • Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301–1310.

    Article  CAS  Google Scholar 

  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on ahighly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290.

    Article  CAS  Google Scholar 

  • Steiner, C., Das, K. C., Garcia, M., Förster, B., & Zech, W. (2008). Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia, 51(5), 359–366.

  • Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39(4), 1236–1242.

    Article  CAS  Google Scholar 

  • Su, H., Fang, Z., Tsang, P. E., Zheng, L., Cheng, W., Fang, J., & Zhao, D. (2016). Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Journal of Hazardous Materials, 318, 533–540.

    Article  CAS  Google Scholar 

  • Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Pérez, M. (2017). The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Science of the Total Environment, 574, 139–147.

    Article  CAS  Google Scholar 

  • Swift, R. S. (2001). Sequestration of carbon by soil. Soil Science, 166(11), 858–871.

    Article  CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (2002). Plant physiology. Sunderland: Sinauer Associates.

    Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85.

    Article  CAS  Google Scholar 

  • Tatarková, V., Hiller, E., & Vaculík, M. (2013). Impact of wheat straw biochar addition to soil to the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.) Ecotoxicology and Environmental Safety, 92, 215–221.

    Article  CAS  Google Scholar 

  • Thies, J. E., Rillig, M. C. (2009). Characteristics of biochar: biological properties. Biochar for Environmental Management: Science and technology, 85–105.

  • Troy, S. M., Lawlor, P. G., O'Flynn, C. J., & Healy, M. G. (2013). Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biology and Biochemistry, 60, 173–181.

  • Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34(4), 231–238.

    Article  CAS  Google Scholar 

  • Van Zwieten, L., Singh, B., Joseph, S., Kimber, S., Cowie, A., Chan, K. Y. (2009). Biochar and emissions of non-CO2 greenhouse gases from soil. Biochar for Environmental Management: Science and Technology, 227–250.

  • Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J., & Morris, S. (2014). An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agriculture, Ecosystems and Environment, 191, 53–62.

    Article  CAS  Google Scholar 

  • Venegas, A., Rigol, A., & Vidal, M. (2015). Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere, 119, 190–198.

    Article  CAS  Google Scholar 

  • Verheijen, F., Jeffery, S., Bastos, A. C., Van DerVelde, M., Diafas, I. (2010). Biochar application to soils—a critical scientific review of effects on soil properties. Processes and functions, European Commission Joint Research Centre for Scientific and Technical Reports, 51–68.

  • Wang, X., Zhou, W., Liang, G., Song, D., & Zhang, X. (2015). Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Science of the Total Environment, 538, 137–144.

  • Waqas, M., Khan, S., Qing, H., Reid, B. J., & Chao, C. (2014). The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere, 105, 53–61.

    Article  CAS  Google Scholar 

  • Wardle, D. A., Nilsson, M. C., & Zackrisson, O. (2008). Fire-derived charcoal causes loss of forest humus. Science, 320(5876), 629–629.

    Article  CAS  Google Scholar 

  • Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and Soil, 300(1–2), 9–20.

    Article  CAS  Google Scholar 

  • Weyers, S. L., Spokas, K. A. (2011). Impact of biochar on earthworm populations: a review. Applied and Environmental Soil Science, 2011.

  • Kelpie Wilson and Debra Reed. 2012. Implications and risks of potential dioxin presence in biochar. IBI White Paper.

  • Winsley, P. (2007). Biochar and bioenergy production for climate change mitigation. New Zealand Science Review, 64(1), 5–10.

    Google Scholar 

  • Woolf, D. (2008). Biochar as a soil amendment: a review of the environmental implications. pp31. http://www.orgprints.org/13268/01/Biochar_as_a_soil_amendment_-_a_review.pdf

  • Wu, M., Han, X., Zhong, T., Yuan, M., & Wu, W. (2016). Soil organic carbon content affects the stability of biochar in paddy soil. Agriculture, Ecosystems & Environment, 223, 59–66.

    Article  Google Scholar 

  • Xu, D., Zhao, Y., Sun, K., Gao, B., Wang, Z., Jin, J., Zhang, Z., Wang, S., Yan, Y., Liu, X., & Wu, F. (2014). Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties. Chemosphere, 111, 320–326.

  • Xu, X., Schierz, A., Xu, N., & Cao, X. (2016). Comparison of the characteristics and mechanisms of Hg (II) sorption by biochars and activated carbon. Journal of Colloid and Interface Science, 463, 55–60.

    Article  CAS  Google Scholar 

  • Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 52(4), 489–495.

    Article  CAS  Google Scholar 

  • Yanai, Y., Toyota, K., & Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 53(2), 181–188.

    Article  CAS  Google Scholar 

  • Yang, F., Zhao, L., Gao, B., Xu, X., & Cao, X. (2016). The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environmental Science and Technology, 50(5), 2264–2271.

    Article  CAS  Google Scholar 

  • Yang, Y., & Sheng, G. (2003). Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environmental Science & Technology, 37(16), 3635–3639.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technology, 102, 6273–6278.

    Article  CAS  Google Scholar 

  • Yargicoglu, E. N., Sadasivam, B. Y., Reddy, K. R., & Spokas, K. (2015). Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 256–268.

    Article  CAS  Google Scholar 

  • Yin, B., Crowley, D., Sparovek, G., Melo, W. J. D., & Borneman, J. (2000). Bacterial functional redundancy along a soil reclamation gradient. Applied and Environmental Microbiology, 66, 4361–4365.

    Article  CAS  Google Scholar 

  • Yu, X. Y., Ying, G. G., & Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar additions to the soil. Chemosphere, 76, 665–671.

    Article  CAS  Google Scholar 

  • Yuan, H., Lu, T., Wang, Y., Chen, Y., & Lei, T. (2016). Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients. Geoderma, 267, 17–23.

    Article  CAS  Google Scholar 

  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497.

    Article  CAS  Google Scholar 

  • Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139(4), 469–475.

  • Zhang, G., Guo, X., Zhao, Z., He, Q., Wang, S., Zhu, Y., & Qian, T. (2016). Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environmental Pollution, 218, 513–522.

    Article  CAS  Google Scholar 

  • Zhang, W., Mao, S., Chen, H., Huang, L., & Qiu, R. (2013). Pb (II) and Cr (VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresource Technology, 147, 545–552.

    Article  CAS  Google Scholar 

  • Zielinska, A., & Oleszczuk, P. (2016). Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars. Chemosphere, 163, 480–489.

    Article  CAS  Google Scholar 

  • Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science and Technology, 44(4), 1295–1301.

    Article  CAS  Google Scholar 

  • Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179.

    Article  CAS  Google Scholar 

  • Zou, J., Huang, Y., Qin, Y., Liu, S., Shen, Q., Pan, G., & Liu, Q. (2009). Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Global Change Biology, 15(1), 229–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muzammil Anjum or Azeem Khalid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadeer, S., Anjum, M., Khalid, A. et al. A Dialogue on Perspectives of Biochar Applications and Its Environmental Risks. Water Air Soil Pollut 228, 281 (2017). https://doi.org/10.1007/s11270-017-3428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3428-z

Keywords

Navigation