Advertisement

Acute Effects of Engineered Nanoparticles on the Growth and Gas Exchange of Zea mays L.—What are the Underlying Causes?

  • Sebastian Fellmann
  • Thomas EichertEmail author
Article

Abstract

The increasing use of nanoparticles (nps) in consumer and industrial applications raises concerns about their potential risks to ecosystems and biological systems. The nps can cause negative effects on bacteria, algae, and animals. However, only little is known about their effects on higher plants and the underlying mechanisms. Zea mays L. “Ayrro” was used to investigate effects of ZnO (30–40 nm), TiO2 (5–15 nm), and Ag (15 nm) nps, in comparison their corresponding bulk counterparts, on germination and early seedling growth. Treatment with nps affected growth positively (ZnO) or negatively (TiO2, Ag) in a dose-dependent manner. Effects of the corresponding bulk counterparts were either similar (TiO2) or opposite (ZnO), or even absent (Ag). To separate direct np effects (“nano effects”) from effects of ions released from nps, roots of 5-week-old plants were either treated with Ag nps or Ag+ ions with the same effective concentrations of dissolved free Ag+ ions, each with or without CaCl2 to precipitate free Ag+ ions as AgCl. Both Ag treatments reduced transpiration and assimilation rate. After addition of CaCl2, these negative effects disappeared, indicating that acute negative effects can be largely attributed to free Ag+ ions, rather than to specific nano effects. Further research with longer exposure times and different growth media could provide further insights in the analysis of np effects on plants.

Keywords

Nanoparticles Toxicity Ion release Plants Gas exchange 

Notes

Acknowledgements

We acknowledge the financial support of the Agricultural Faculty of the University of Bonn. We thank the company RAS AG for providing silver nanoparticles for the experiments. We are also very grateful to Prof. Heiner E. Goldbach for his valuable and supportive advises during our work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abdelhamid, H. N. (2016). Nanoparticles as pharmaceutical agents. Mathews Journal of Anesthesia, 1(1), 003.Google Scholar
  2. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983.CrossRefGoogle Scholar
  3. Andersen C. P., King G., Plocher M., Storm M., Pokhrel L. R., Johnson M. G., Rygiewicz P. T. (2016). Germination and early plant development of ten plant species exposed to TiO2 and CeO2 nanoparticles. Environmental Toxicology and Chemistry. http://www.onlinelibrary.wiley.com/doi/10.1002/etc.3374/epdf.
  4. Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75(7), 850–857.CrossRefGoogle Scholar
  5. Burke, D. J., Pietrasiak, N., Situ, S. F., Abenojar, E. C., Porche, M., Kraj, P., Lakliang, Y., & Samia, A. C. S. (2015). Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. International Journal of Molecular Sciences, 16(10), 23630–23650.CrossRefGoogle Scholar
  6. Clement, L., Hurel, C., & Marmier, N. (2013). Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere, 90(3), 1083–1090.CrossRefGoogle Scholar
  7. Cox, A., Venkatachalam, P., Sahi, S., & Sharma, N. (2016). Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiology Biochemistry, 107, 147–163.CrossRefGoogle Scholar
  8. Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9), 1125–1129.CrossRefGoogle Scholar
  9. Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science & Technology, 47(2), 1082–1090.CrossRefGoogle Scholar
  10. EU commission (2011). Commission recommendation on the definition of nanomaterial OJ L 275/38, 18 October 2011.Google Scholar
  11. Federici, G., Shaw, B. J., & Handy, R. D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84(4), 415–430.CrossRefGoogle Scholar
  12. Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146(1), 101–106.CrossRefGoogle Scholar
  13. Finnegan, M. P., Zhang, H., & Banfield, J. F. (2007). Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. The Journal of Physical Chemistry C, 111(5), 1962–1968.CrossRefGoogle Scholar
  14. Foltete, A.-S., Masfaraud, J.-F., Bigorgne, E., Nahmani, J., Chaurand, P., Botta, C., Labille, J., Rose, J., Ferard, J.-F., & Cotelle, S. (2011). Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution, 159(10), 2515–2522.CrossRefGoogle Scholar
  15. Gagne, F., Andre, C., Skirrow, R., Gelinas, M., Auclair, J., van Aggelen, G., Turcotte, P., & Gagnon, C. (2012). Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach. Chemosphere, 89(5), 615–622.CrossRefGoogle Scholar
  16. García-Gómez, C., Babin, M., Obrador, A., Álvarez, J. M., & Fernández, M. D. (2015). Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environmental Science and Pollution Research, 22(21), 16803–16813.CrossRefGoogle Scholar
  17. García-Sánchez, S., Bernales, I., & Cristobal, S. (2015). Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics, 16(1), 341.CrossRefGoogle Scholar
  18. Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 81(10), 1253–1262.CrossRefGoogle Scholar
  19. Gottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environmental Pollution, 181, 287–300.CrossRefGoogle Scholar
  20. Hawthorne, J., Musante, C., Sinha, S. K., & White, J. C. (2012). Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. International Journal of Phytoremediation, 14(4), 429–442.CrossRefGoogle Scholar
  21. Hu, L., & Cui, Y. (2012). Energy and environmental nanotechnology in conductive paper and textiles. Energy & Environmental Science, 5(4), 6423–6435.CrossRefGoogle Scholar
  22. Jiang, H.-S., Qiu, X.-N., Li, G.-B., Li, W., & Yin, L.-Y. (2014). Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environmental Toxicology and Chemistry, 33(6), 1398–1405.CrossRefGoogle Scholar
  23. Judy J. D. (2013). Bioavailability of manufactured nanomaterials in terrestrial ecosystems. PhD Thesis. University of Kentucky. Lexington, Kentucky, USA.Google Scholar
  24. Keller, A. A., & Lazareva, A. (2014). Predicted releases of engineered nanomaterials: from global to regional to local. Environmental Science & Technology Letters, 1(1), 65–70.CrossRefGoogle Scholar
  25. Klancnik, K., Drobne, D., Valant, J., & Dolenc Koce, J. (2011). Use of a modified allium test with nanoTiO2. Ecotoxicology and Environmental Safety, 74(1), 85–92.CrossRefGoogle Scholar
  26. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology & Medicine, 51(10), 1872–1881.CrossRefGoogle Scholar
  27. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.-M., Brisset, F., & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. The Science of the Total Environment, 431, 197–208.CrossRefGoogle Scholar
  28. Lee, S., Chung, H., Kim, S., & Lee, I. (2013). The Genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air and Soil Pollution, 224(9), 1668–1678.CrossRefGoogle Scholar
  29. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250.CrossRefGoogle Scholar
  30. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580–5585.CrossRefGoogle Scholar
  31. Lopez-Moreno, M. L., de La Rosa, G., Hernandez-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 44(19), 7315–7320.CrossRefGoogle Scholar
  32. Lowry, G. V., Hotze, E. M., Bernhardt, E. S., Dionysiou, D. D., Pedersen, J. A., Wiesner, M. R., & Xing, B. (2010). Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an Introduction to the special series. Journal of Environmental Quality, 39(6), 1867–1874.CrossRefGoogle Scholar
  33. Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano-ZnO on growth of of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Applied Biological Research, 13(2), 54–61.Google Scholar
  34. Mangematin, V., & Walsh, S. (2012). The future of nanotechnologies. Technovation, 32(3–4), 157–160.CrossRefGoogle Scholar
  35. Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J., & Warheit, D. B. (2006). Safe handling of nanotechnology. Nature, 444(7117), 267–269.CrossRefGoogle Scholar
  36. Mihranyan, A., Ferraz, N., & Strømme, M. (2012). Current status and future prospects of nanotechnology in cosmetics. Progress in Materials Science, 57(5), 875–910.CrossRefGoogle Scholar
  37. Musante, C., & White, J. C. (2012). Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology, 27(9), 510–517.CrossRefGoogle Scholar
  38. Mustafa, G., Sakata, K., Hossain, Z., & Komatsu, S. (2015). Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. Journal of Proteomics, 122, 100–118.CrossRefGoogle Scholar
  39. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., & Behra, R. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science & Technology, 42(23), 8959–8964.CrossRefGoogle Scholar
  40. Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.CrossRefGoogle Scholar
  41. Niemietz, C. M., & Tyerman, S. D. (2002). New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Letters, 531(3), 443–447.CrossRefGoogle Scholar
  42. Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150(1), 5–22.CrossRefGoogle Scholar
  43. Oukarroum, A., Barhoumi, L., Pirastru, L., & Dewez, D. (2013). Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environmental Toxicology and Chemistry, 32(4), 902–907.CrossRefGoogle Scholar
  44. Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. The Analyst, 139(19), 4855–4861.CrossRefGoogle Scholar
  45. Parveen, A., & Rao, S. (2014). Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. Journal of Cluster Science, 26(3), 693–701.CrossRefGoogle Scholar
  46. Piccinno F., Gottschalk F., Seeger S., Nowack B. (2012). Industrial production quantities and uses often engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research (14): 1109–1120.Google Scholar
  47. Poole, C. P., & Owens, F. J. (2003). Introduction to nanotechnology. Hoboken: J. Wiley.Google Scholar
  48. Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical Society Reviews, 35(7), 583–592.CrossRefGoogle Scholar
  49. Ruffini Castiglione, M., Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13(6), 2443–2449.CrossRefGoogle Scholar
  50. Savery, L. C., Viñas, R., Nagy, A. M., Pradeep, P., Merrill, S. J., Hood, A. M., Malghan, S. G., Goering, P. L., & Brown, R. P. (2017). Deriving a provisional tolerable intake for intravenous exposure to silver nanoparticles released from medical devices. Regulatory Toxicology and Pharmacology, 85, 108–118.CrossRefGoogle Scholar
  51. Schmidt, J., & Vogelsberger, W. (2009). Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of Solution Chemistry, 38(10), 1267–1282.CrossRefGoogle Scholar
  52. Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93(6), 906–915.CrossRefGoogle Scholar
  53. Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., & Liu, Y. (2012). Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology, 6(3), 241–248.CrossRefGoogle Scholar
  54. Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B. K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V., & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 289(5), 698–708.CrossRefGoogle Scholar
  55. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479.CrossRefGoogle Scholar
  56. Stensberg, M. C., Wei, Q., McLamore, E. S., Porterfield, D. M., Wei, A., & Sepulveda, M. S. (2011). Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine, 6(5), 879–898.CrossRefGoogle Scholar
  57. Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Frontiers in Environmental Science, 4, 46.CrossRefGoogle Scholar
  58. Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Pandey, R., Singh, V. P., Prasad, S. M., & Dubey, N. K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, 2–12.CrossRefGoogle Scholar
  59. Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerho, S., Zhang, Q., Qingbo, Z., Jerald, L., Schnoor, Vicki, L., Colvin, Braam, J., & Alvarez, P. J. (2013). Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science & Technology, 47(10), 5442–5449.CrossRefGoogle Scholar
  60. Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., & Wang, L. (2015). Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.) International Journal of Environmental Research and Public Health, 12(12), 15100–15109.CrossRefGoogle Scholar
  61. Yin, L., Cheng, Y., Espinasse, B., Colman, B. P., Auffan, M., Wiesner, M., Rose, J., Liu, J., & Bernhardt, E. S. (2011). More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environmental Science & Technology, 45(6), 2360–2367.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Crop Science and Resource Conservation (INRES), Plant NutritionUniversity of BonnBonnGermany

Personalised recommendations