Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rhizobacterial Pseudomonas spp. Strains Harbouring acdS Gene Could Enhance Metallicolous Legume Nodulation in Zn/Pb/Cd Mine Tailings


Phytostabilisation can benefit from phytostimulatory rhizobacteria. Forty-three bacterial strains were isolated from the roots of the metallicolous legume Anthyllis vulneraria ssp. carpatica grown in a highly contaminated mine tailing (total Cd, Pb and Zn were up to 1200; 34,000; and 170,000 mg kg−1, respectively). We aimed at evaluating their phytostimulatory effects on the development of leguminous metallophytes. Strains were screened for fluorescent siderophores and auxin synthesis, inorganic P solubilisation and 1-amino-cyclopropane-1-carboxylate deaminase (ACCd) activity to define a subset of 11 strains that were inoculated on the leguminous metallophytes A. vulneraria and Lotus corniculatus grown in diluted mine spoil (Zn 34,653; Pb 6842; and Cd 242, all in mg kg−1). All strains were affiliated to Pseudomonas spp. (except two), synthetised auxins and siderophores and solubilised P (except three), and seven of them were ACCd positive. The inoculation effects (shoot-root-nodule biomass, chlorophyll content) depended on legume species and bacterial strain genotype. Phytostimulation scores were unrelated to siderophore/auxin synthesis and P solubilisation rates. Inoculations of the strain nos. 17–43 triggered a 1.2-fold significant increase in the chlorophyll content of A. vulneraria. Chlorophyll content and root biomass of L. corniculatus were significantly increased following the inoculations of the strain nos. 17–22 (1.5–1.4-fold, respectively). The strongest positive effects were related to increases in the nodule biomass of L. corniculatus in the presence of three ACCd-positive strains (1.8-fold), one of which was the highest auxin producer. These data suggest to focus on interactions between ACCd activity and auxin synthesis to enhance nodulation of metallicolous legumes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Ahmad, E., Khan, M. S., & Zaidi, A. (2013). ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis, 61, 93–104.

  2. Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology Fertility of Soils, 12, 39–45.

  3. Becerra-Castro, C., Monterroso, C., Prieto-Fernández, A., Rodríguez-Lamas, L., Loureiro-Viñas, M., Acea, M. J., & Kidd, P. S. (2012). Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. Journal of Hazardous Materials, 217–218, 350–359.

  4. Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I., & Davies, W. J. (2009). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytologist, 181, 413–423.

  5. Belimov, A. A., Dodd, I. C., Safronova, V. I., Hontzeas, N., & Davies, W. J. (2007). Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. Journal of Experimental Botany, 58, 1485–1495.

  6. Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L. A., & Schalk, I. J. (2010). Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environmental Microbiology Reports, 2, 419–425.

  7. Braud, A. M., Hubert, M., Gaudin, P., & Lebeau, T. (2015). A quick rhizobacterial selection tests for the remediation of copper contaminated soils. Journal of Applied Microbiology, 119, 435–445.

  8. Burd, G. I., Dixon, D. G., & Glick, B. R. (1998). A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Applied Environmental Microbiology, 64, 3663–3668.

  9. Cardinale, M., Ratering, S., Suarez, C., Montoya, A. M. Z., Geissler-Plaum, R., & Schnell, S. (2015). Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiological Research, 181, 22–32.

  10. Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440–459.

  11. Cattelan, A. J., Hartel, P. G., & Fuhrmann, J. J. (1999). Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 63, 1670–1680.

  12. Cornu, J. Y., Elhabiri, M., Ferret, C., Geoffroy, V. A., Jezequel, K., Leva, Y., Lollier, M., Schalk, I. J., & Lebeau, T. (2014). Contrasting effects of pyoverdine on the phytoextraction of Cu and Cd in a calcareous soil. Chemosphere, 103, 212–219.

  13. DeKock, P. C. (1956). Heavy metal toxicity and iron chlorosis. Annals of Botany-London, 20, 133–141.

  14. Dell’Amico, E., Cavalca, L., & Andreoni, V. (2005). Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology, 52, 153–162.

  15. Dey, R., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth- promoting rhizobacteria. Microbiological Research, 159, 371–394.

  16. Dimkpa, C. O., Merten, D., Svatoš, A., Büchel, G., & Kothe, E. (2009). Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry, 41, 154–162.

  17. Dimkpa, C. O., Svatoš, A., Dabrowska, P., Schmidt, A., Boland, W., & Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere, 74, 19–25.

  18. Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., & Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, 212, 155–164.

  19. Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Dos Santos, A., & Escarré, J. (2006). Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282, 53–65.

  20. Gaby, J.C., & Buckley, D.H. (2012). A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE, 7. doi:10.1371/journal.pone.0042149.

  21. Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.

  22. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39.

  23. Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., & McConkey, B. (2007). Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, 26, 227–242.

  24. Göhre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.

  25. Grandlic, C. J., Mendez, M. O., Chorover, J., Machado, B., & Maier, R. M. (2008). Plant growth-promoting bacteria for phytostabilization of mine tailings. Environmental Science and Technology, 42, 2079–2084.

  26. Grandlic, C. J., Palmer, M. W., & Maier, R. M. (2009). Optimization of plant growth-promoting bacteria-assisted phytostabilization of mine tailings. Soil Biology and Biochemistry, 41, 1734–1740.

  27. Hol, W.H.G., Bezemer, T.M., & Biere, A. (2013). Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in Plant Science, doi: org/10.3389/fpls.2013.00081

  28. Honma, M., & Shimomura, T. (1978). Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry, 42, 1825–1831.

  29. Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W., & Sessitsch, A. (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied Environmental Microbiology, 70, 2667–2677.

  30. Kuffner, M., De Maria, S., Puschenreiter, M., Fallmann, K., Wieshammer, G., Gorfer, M., Strauss, J., Rivelli, A. R., & Sessitsch, A. (2010). Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. Journal of Applied Microbiology, 108, 1471–1484.

  31. Liu, W., Yang, C., Shi, S., & Shu, W. (2014). Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings. Chemosphere, 97, 47–53.

  32. Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258.

  33. Magnucka, E. G., & Pietr, S. J. (2015). Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth. Microbiological Research, 181, 112–119.

  34. Mahieu, S., Escarré, J., Brunel, B., Méjamolle, A., Soussou, S., Galiana, A., & Cleyet-Marel, J. C. (2014). Soil nitrogen balance resulting from N fixation and rhizodeposition by the symbiotic association Anthyllis vulneraria/Mesorhizobium metallidurans grown in highly polluted Zn, Pb and Cd mine tailings. Plant and Soil, 375, 175–188.

  35. Mahieu, S., Frérot, H., Vidal, C., Galiana, A., Heulin, K., Maure, L., Brunel, B., Lefèbvre, C., Escarré, J., & Cleyet-Marel, J. C. (2011). Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant and Soil, 342, 405–417.

  36. Maynaud, G., Brunel, B., Mornico, D., Durot, M., Severac, D., Dubois, E., Navarro, E., Cleyet-Marel, J. C., & Le-Quéré, A. (2013). Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to zinc and cadmium exposure. BMC Genomics, 14, 292. doi:10.1186/1471-2164-14-292.

  37. Maynaud, G., Willems, A., Soussou, S., Vidal, C., Maure, L., Moulin, L., Cleyet-Marel, J. C., & Brunel, B. (2012). Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Systematic and Applied Microbiology, 35, 65–72.

  38. Meyer, J. M., & Abdallah, M. A. (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Journal of General Microbiology, 107, 319–328.

  39. Moreira, H., Marques, A. P. G. C., Franco, A. R., Rangel, A. O. S. S., & Castro, P. M. L. (2014). Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research, 21, 9742–9753.

  40. Nascimento, F.X., Rossi, M.J., Soares, C.R.F.S., McConkey, B.J., & Glick, B.R. (2014). New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE, 9. doi:10.1371/journal.pone.0099168.

  41. Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265–270.

  42. Navarro-Noya, Y. E., Hernández-Mendozaa, E., Morales-Jiméneza, J., Jan-Robleroa, J., Martínez-Romerob, E., & Hernández-Rodríguez, C. (2012). Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Applied Soil Ecology, 62, 52–60.

  43. Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118, 10–15.

  44. Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152, 95–103.

  45. Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

  46. Römheld, V., & Marschner, H. (1986). Mobilization of iron in the rhizosphere of different plant species. Advances in Plant Nutrition, 2, 155–204.

  47. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

  48. Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W. W., Fallmann, K., & Puschenreiter, M. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry, 60, 182–194.

  49. Shaharoona, B., Arshad, M., & Zahir, Z. A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied Microbiology, 42, 155–159.

  50. Shahzad, S. M., Khalid, A., Arshad, M., Tahir, J., & Mahmood, T. (2010). Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. European Journal of Soil Biology, 46, 342–347.

  51. Soussou, S., Mahieu, S., Brunel, B., Escarré, J., Lebrun, M., Banni, M., Boussetta, H., & Cleyet-Marel, J. C. (2013). Zinc accumulation patterns in four Anthyllis vulneraria subspecies supplemented with mineral nitrogen or grown in the presence of their symbiotic bacteria. Plant and Soil, 371, 423–434.

  52. Teixeira, C., Almeida, C. M. R., da Silva, M. N., Bordalo, A. A., & Mucha, A. P. (2014). Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Science of the Total Environment, 493, 757–765.

  53. Timmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., Danilas, T., & Nevo, E. (2011). Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE, 6. doi:10.1371/journal.pone.0017968.

  54. Valls, M., & de Lorenzo, V. (2002). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Reviews, 26, 327–338.

  55. van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.

  56. van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.

  57. Vidal, C., Chaintreuil, C., Berge, O., Maure, L., Escarre, J., Bena, G., Brunel, B., & Cleyet-Marel, J. C. (2009). Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. International Journal of Systematic and Evolutionary Microbiology, 59, 850–855.

  58. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.

  59. Wawrik, B., Kerkhof, L., Zylstra, G. J., & Kukor, J. J. (2005). Identification of unique type II polyketide synthase genes in soil. Applied Environmental Microbiology, 71, 2232–2238.

  60. Whiting, S. N., Reeves, R. D., Richards, D., Johnson, M. S., Cooke, J. A., Malaisse, F., Paton, A., Smith, J. A. C., Angle, J. S., Chaney, R. L., Ginocchio, R., Jaffré, T., Johns, R., McIntyre, T., Purvis, O. W., Salt, D. E., Schat, H., Zhao, F. J., & Baker, A. J. M. (2004). Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology, 12, 106–116.

  61. Yu, X., Li, Y., Zhang, C., Liu, H., Liu, J., Zheng, W., Kang, X., Leng, X., Zhao, K., Gu, Y., Zhang, X., Xiang, Q., & Chen, Q. (2014). Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS ONE, 9. doi:10.1371/journal.pone.0106618.

  62. Zahir, Z. A., Zafar-ul-Hye, M., Sajjad, S., & Naveed, M. (2011). Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biology Fertility of Soils, 47, 457–465.

  63. Zhang, W. H., Huang, Z., He, L. Y., & Sheng, X. F. (2012). Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Chemosphere, 87, 1171–1178.

Download references


Financial support was provided by the ANR project SyMetal (grant number ANR-10-CESA-0006). The authors wish to thank M. Guy Delmot for his technical assistance on the experimental site without which the implementation of the phytostabilisation assays would not have been feasible.

Author information

Correspondence to Ezékiel Baudoin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.


(PDF 83 kb)


(PDF 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soussou, S., Brunel, B., Pervent, M. et al. Rhizobacterial Pseudomonas spp. Strains Harbouring acdS Gene Could Enhance Metallicolous Legume Nodulation in Zn/Pb/Cd Mine Tailings. Water Air Soil Pollut 228, 142 (2017).

Download citation


  • Phytostabilisation
  • Symbiosis
  • Phytostimulation
  • Pseudomonas
  • PGPR
  • ACC deaminase