Bioremediation of Phenol-Contaminated Industrial Wastewater Using a Bacterial Consortium—from Laboratory to Field

  • Gregory Poi
  • Arturo Aburto-Medina
  • Puah Chum Mok
  • Andrew S. Ball
  • Esmaeil Shahsavari
Article

Abstract

Singapore is an island city state with an economy dependent on petrochemicals and shipping, but with severely limited water resources. This study aimed to establish a suitable methodology specifically for the translation of a laboratory-scale system to an industrial scale for the treatment of phenol-contaminated wastewater. A habitat-specific microbial consortium was developed and reconstituted from 22 pure cultures dominated by Acinetobacter sp., Bacillus sp. and Pseudomonas sp. to form a synthetic biofilm-forming community with the capacity to degrade phenol-contaminated wastewater. The laboratory experiment was scaled-up to 400 m3 by using biotrickling reactors to reduce the phenol level from 407 mg L−1 to below detection limit over 104 days incubation. The results showed that the microbial consortia could also reduce the toxicity of the wastewater while degrading the phenol and lowering the wastewater COD. Further, this approach could be translated into the field without the need for a purpose-built primary treatment facility preventing the generation of excessive biomass and eliminating the need for sludge disposal.

Keywords

Phenol Bioaugmentation Wastewater Bacteria 

References

  1. Adav, S. S., Chen, M.-Y., Lee, D.-J., & Ren, N.-Q. (2007). Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere, 67, 1566–1572.CrossRefGoogle Scholar
  2. Adetutu, E. M., Thorpe, K., Bourne, S., Cao, X., Shahsavari, E., Kirby, G., & Ball, A. S. (2011). Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia, 103, 959–968.CrossRefGoogle Scholar
  3. Afzal, M., Iqbal, S., Rauf, S., & Khalid, Z. M. (2007). Characteristics of phenol biodegradation in saline solutions by monocultures of Pseudomonas aeruginosa and Pseudomonas pseudomallei. Journal of Hazardous Materials, 149, 60–66.CrossRefGoogle Scholar
  4. Agency for Toxic Substances and Disease Registry (ATSDR) (2015). The priority list of hazardous substances that will be the candidates for toxicological profiles. http://www.atsdr.cdc.gov/spl/. Accessed Feb 2017
  5. Alisi, C., Musella, R., Tasso, F., Ubaldi, C., Manzo, S., Cremisini, C., & Sprocati, A. R. (2009). Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. The Science of the Total Environment, 407, 3024–3032.CrossRefGoogle Scholar
  6. Banerjee, A., & Ghoshal, A. K. (2010). Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. Journal of Hazardous Materials, 176, 85–91.CrossRefGoogle Scholar
  7. Basak, B., Bhunia, B., Dutta, S., & Dey, A. (2013). Enhanced biodegradation of 4-chlorophenol by Candida tropicalis PHB5 via optimization of physicochemical parameters using Taguchi orthogonal array approach. International Biodeterioration & Biodegradation, 78, 17–23.CrossRefGoogle Scholar
  8. Bento, F. M., Camargo, F. A. O., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96, 1049–1055.CrossRefGoogle Scholar
  9. Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Dore, J., Delgenes, P., Moletta, R., & Wagner, M. (2000). Ecological study of a bioaugmentation failure. Environmental Microbiology, 2, 179–190.CrossRefGoogle Scholar
  10. Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology, 26, 483–489.CrossRefGoogle Scholar
  11. Burmølle, M., Webb, J. S., Rao, D., Hansen, L. H., Sørensen, S. J., & Kjelleberg, S. (2006). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Applied and Environmental Microbiology, 72, 3916–3923.CrossRefGoogle Scholar
  12. Chapman, P. M. (2000). Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environmental Toxicology and Chemistry, 19, 3–13.Google Scholar
  13. Chelliapan, S., & Sallis, P. J. (2011). Application of anaerobic biotechnology for pharmaceutical wastewater treatment. The 110AB Journal, Special Issue on Environmental Management for Sustainable Development, 2, 13–21.Google Scholar
  14. Chemlal, R., Tassist, A., Drouiche, M., Lounici, H., Drouiche, N., & Mameri, N. (2012). Microbiological aspects study of bioremediation of diesel-contaminated soils by biopile technique. International Biodeterioration & Biodegradation, 75, 201–206.CrossRefGoogle Scholar
  15. Coulon, F., Al Awadi, M., Cowie, W., Mardlin, D., Pollard, S., Cunningham, C., Risdon, G., Arthur, P., Semple, K. T., & Paton, G. I. (2010). When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environmental Pollution, 158, 3032–3040.CrossRefGoogle Scholar
  16. Diplock, E. E., Mardlin, D. P., Killham, K. S., & Paton, G. I. (2009). Predicting bioremediation of hydrocarbons: laboratory to field scale. Environmental Pollution, 157, 1831–1840.CrossRefGoogle Scholar
  17. Fang, F., Han, H., Zhao, Q., Xu, C., & Zhang, L. (2013). Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment. Bioresource Technology, 150, 314–320.CrossRefGoogle Scholar
  18. Felföldi, T., Szekely, A. J., Goral, R., Barkacs, K., Scheirich, G., Andras, J., Racz, A., & Marialigeti, K. (2010). Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresource Technology, 101, 3406–3414.CrossRefGoogle Scholar
  19. Gianfreda, L., Iamarino, G., Scelza, R., & Rao, M. A. (2006). Oxidative catalysts for the transformation of phenolic pollutants: a brief review. Biocatalysis and Biotransformation, 24, 177–187.CrossRefGoogle Scholar
  20. Goldstein, R., Mallory, L., & Alexander, M. (1985). Reasons for possible failure of inoculation to enhance biodegradation. Applied and Environmental Microbiology, 50, 977–983.Google Scholar
  21. Gutierrez, M., Etxebarria, J., & De las Fuentes, L. (2002). Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research, 36, 919–924.CrossRefGoogle Scholar
  22. Head, I. M., Jones, D. M., & Röling, W. F. (2006). Marine microorganisms make a meal of oil. Nature Reviews Microbiology, 4, 173–182.CrossRefGoogle Scholar
  23. Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices—a review. Journal of Environmental Management, 92, 2304–2347.CrossRefGoogle Scholar
  24. Hsien, T. Y., & Lin, Y. H. (2005). Biodegradation of phenolic wastewater in a fixed biofilm reactor. Biochemical Engineering Journal, 27, 95–103.CrossRefGoogle Scholar
  25. Iwamoto, T., & Nasu, M. (2001). Current bioremediation practice and perspective. Journal of Bioscience and Bioengineering, 92, 1–8.CrossRefGoogle Scholar
  26. Ji, J.-Y., Xing, Y.-J., Ma, Z.-T., Zhang, M., & Zheng, P. (2013). Acute toxicity of pharmaceutical wastewaters containing antibiotics to anaerobic digestion treatment. Chemosphere, 91, 1094–1098.CrossRefGoogle Scholar
  27. Jiang, Y., Wen, J., Bai, J., Jia, X., & Hu, Z. (2007). Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. Journal of Hazardous Materials, 147, 672–676.CrossRefGoogle Scholar
  28. Jiang, L., Ruan, Q., Li, R., & Li, T. (2013). Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y. Journal of Basic Microbiology, 53, 224–230.CrossRefGoogle Scholar
  29. Khan, M. I., Cheema, S. A., Tang, X., Hashmi, M. Z., Shen, C., Park, J., & Chen, Y. (2013). A battery of bioassays for the evaluation of phenanthrene biotoxicity in soil. Archives of Environmental Contamination and Toxicology, 65, 47–55.CrossRefGoogle Scholar
  30. Kuang, Y., Zhou, Y., Chen, Z., Megharaj, M., & Naidu, R. (2013). Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresource Technology, 136, 588–594.CrossRefGoogle Scholar
  31. Łebkowska, M., Zborowska, E., Karwowska, E., Miaśkiewicz-Pęska, E., Muszyński, A., Tabernacka, A., Naumczyk, J., & Jęczalik, M. (2011). Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: field-scale processes in Poland. Ecological Engineering, 37, 1895–1900.CrossRefGoogle Scholar
  32. Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.CrossRefGoogle Scholar
  33. Li, M., Peng, L., Ji, Z., Xu, J., & Li, S. (2008). Establishment and characterization of dual‐species biofilms formed from a 3, 5‐dinitrobenzoic‐degrading strain and bacteria with high biofilm‐forming capabilities. FEMS Microbiology Letters, 278, 15–21.CrossRefGoogle Scholar
  34. Liu, J., Jia, X., Wen, J., & Zhou, Z. (2012). Substrate interactions and kinetics study of phenolic compounds biodegradation by Pseudomonas sp. cbp1-3. Biochemical Engineering Journal, 67, 156–166.CrossRefGoogle Scholar
  35. Lobo, C. C., Bertola, N. C., & Contreras, E. M. (2013). Stoichiometry and kinetic of the aerobic oxidation of phenolic compounds by activated sludge. Bioresource Technology, 136, 58–65.CrossRefGoogle Scholar
  36. Macaulay, B. M., & Rees, D. (2014). Bioremediation of oil spills: a review of challenges for research advancement. Annals of Environmental Science, 8, 2.Google Scholar
  37. Macova, M., Escher, B., Reungoat, J., Carswell, S., Chue, K. L., Keller, J., & Mueller, J. (2010). Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration. Water Research, 44, 477–492.CrossRefGoogle Scholar
  38. McKenzie, N., Yue, S., Liu, X., Ramsay, B. A., & Ramsay, J. A. (2014). Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor. Chemosphere, 109, 164–172.CrossRefGoogle Scholar
  39. McKew, B. A., Coulon, F., Yakimov, M. M., Denaro, R., Genovese, M., Smith, C. J., Osborn, A. M., Timmis, K. N., & McGenity, T. J. (2007). Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environmental Microbiology, 9, 1562–1571.CrossRefGoogle Scholar
  40. Mendonça, E., Picado, A., Paixao, S. M., Silva, L., Cunha, M. A., Leitao, S., Moura, I., Cortez, C., & Brito, F. (2009). Ecotoxicity tests in the environmental analysis of wastewater treatment plants: case study in Portugal. Journal of Hazardous Materials, 163, 665–670.CrossRefGoogle Scholar
  41. Mollaei, M., Abdollahpour, S., Atashgahi, S., Abbasi, H., Masoomi, F., Rad, I., Lotfi, A. S., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2010). Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations. Journal of Hazardous Materials, 175, 284–292.CrossRefGoogle Scholar
  42. Morikawa, M. (2006). Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of Bioscience and Bioengineering, 101, 1–8.CrossRefGoogle Scholar
  43. Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239.CrossRefGoogle Scholar
  44. Park, M-R., Kim, D-J., Choi, J-W., Lim, D-S. (2013). Influence of immobilization of bacterial cells and TiO2 on phenol degradation. Water, Air, & Soil Pollution, 224(3), 1473.Google Scholar
  45. Pitts, B., Hamilton, M. A., Zelver, N., & Stewart, P. S. (2003). A microtiter-plate screening method for biofilm disinfection and removal. Journal of Microbiological Methods, 54, 269–276.CrossRefGoogle Scholar
  46. Power, E. A., & Boumphrey, R. S. (2004). International trends in bioassay use for effluent management. Ecotoxicology, 13, 377–398.CrossRefGoogle Scholar
  47. Public Utilities Board of Singapore (2014). Requirements for discharge of trade effluent into the public sewers. Singapore: Sewerage and Drainage Act.Google Scholar
  48. Reungoat, J., Escher, B., Macova, M., & Keller, J. (2011). Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water Research, 45, 2751–2762.CrossRefGoogle Scholar
  49. Reungoat, J., Escher, B., Macova, M., Argaud, F., Gernjak, W., & Keller, J. (2012). Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 46, 863–872.CrossRefGoogle Scholar
  50. Rigo, M., & Alegre, RM. (2004). Isolation and selection of phenol-degrading microorganisms from industrial wastewaters and kinetics of the biodegradation. Folia Microbiologica, 49, 41–45.Google Scholar
  51. Rodríguez-Martínez, E. M., Pérez, E. X., Schadt, C. W., Zhou, J., & Massol-Deyá, A. A. (2006). Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico). International Journal of Environmental Research and Public Health, 3, 292–300.CrossRefGoogle Scholar
  52. Saravanan, P., Pakshirajan, K., Saha, P. (2008). Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technology, 99, 205–209.Google Scholar
  53. Shong, J., Diaz, M. R. J., & Collins, C. H. (2012). Towards synthetic microbial consortia for bioprocessing. Current Opinion in Biotechnology, 23, 798–802.CrossRefGoogle Scholar
  54. Song, H., Liu, Y., Xu, W., Zeng, G., Aibibu, N., Xu, L., & Chen, B. (2009). Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresource Technology, 100, 5079–5084.CrossRefGoogle Scholar
  55. Stephenson, D., & Stephenson, T. (1992). Bioaugmentation for enhancing biological wastewater treatment. Biotechnology Advances, 10, 549–559.CrossRefGoogle Scholar
  56. Tekin, H., Bilkay, O., Ataberk, S. S., Balta, T. H., Ceribasi, I. H., Sanin, F. D., Dilek, F. B., & Yetis, U. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials, 136, 258–265.CrossRefGoogle Scholar
  57. Thompson, I. P., van der Gast, C. J., Ciric, L., & Singer, A. C. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology, 7, 909–915.CrossRefGoogle Scholar
  58. USEPA. (1990). Test methods for evaluating solid waste: laboratory manual for physical and chemical methods (SW 486). Washington, DC: USEPA.Google Scholar
  59. Van Der Gast, C. J., Whiteley, A. S., & Thompson, I. P. (2004). Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environmental Microbiology, 6, 254–263.CrossRefGoogle Scholar
  60. Vijayagopal, V., & Viruthagiri, T. (2005). Kinetics of biodegradation of phenol using mixed culture isolated from mangrove soil. Pollution Research, 24(1), 157.Google Scholar
  61. Wagner-Dobler, I. (2003). Microbial inoculants: snake oil or panacea. In Bioremediation: a critical review (pp. 259–289). Norfolk: Horizon Scientific Press.Google Scholar
  62. Yoshida, S., Ogawa, N., Fujii, T., & Tsushima, S. (2009). Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. Journal of Applied Microbiology, 106, 790–800.CrossRefGoogle Scholar
  63. Zhao, D., Liu, C., Liu, L., Zhang, Y., Liu, Q., & Wu, W.-M. (2011). Selection of functional consortium for crude oil-contaminated soil remediation. International Biodeterioration & Biodegradation, 65, 1244–1248.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Gregory Poi
    • 1
    • 2
  • Arturo Aburto-Medina
    • 3
  • Puah Chum Mok
    • 4
  • Andrew S. Ball
    • 2
    • 3
  • Esmaeil Shahsavari
    • 3
  1. 1.School of Chemical and Life SciencesSingapore PolytechnicSingaporeSingapore
  2. 2.School of Biological SciencesFlinders UniversityBedford ParkAustralia
  3. 3.Centre for Environmental Sustainability and Remediation, School of ScienceRMIT UniversityBundooraAustralia
  4. 4.Biomax Technologies Pte Ltd.SingaporeSingapore

Personalised recommendations