Water, Air, & Soil Pollution

, 228:79 | Cite as

Effects of Chronic Exposure to Silver Nanoparticles on Ruditapes decussatus Gills Using Biochemical Markers

  • Slah HidouriEmail author
  • Chérif Ensibi
  • Ahmed Landoulsi
  • Mohamed Néjib Daly-Yahia


Nanoparticles are among the particular materials produced by industrial activities; the release of these nanoparticles in natural ecosystems interacts with living organisms. Aquatic environment is the most common estuary waste medium for industrial and all human activities, the consequences may be highly effective on sea food species. Moreover, the potential in situ reduction of metallic ions by preexistent agents leads to nanoparticles which may cause hazardous effects. Many organisms become at risk especially those that use gills during respiration process such as bivalves. The study undertaken investigates the potential effect of silver nanoparticles obtained by green synthesis method on the gills of Ruditapes decussatus as a model. Nanoparticles have been synthesized using Ceratonia siliqua fruit extract as a reducing agent. The organisms have been chronically exposed to silver nanoparticles and the effects were biochemically evaluated. The tests performed show a typical behavior of catalase, glutathione reductase, and glutathione S-transferase activities that give information about the oxidative stress-induced malondialdehyde quantification, which reveals a possible membranous deterioration of the gills. Acetylcholinesterase expression has been qualified to be at a safe rate which implies the capacity of the animal to protect the cholinergic system.


Silver nanoparticles Ceratonia siliqua fruit extract Ruditapes decussatus Chronic exposure Biochemical manifestations 



Dr. Hidouri is truthfully grateful to the Department of Biology, Faculty of Science of Bizerte Carthage University for availing the required facilities throughout the experimental period of this work. The authors would like to thank anonymous reviewers and the editing board for the efforts given throughout the publication process.


  1. Barhoumi, B., LeMenach, K., Dévier, M. H., El Megdiche, Y., Hammami, B., Ben Ameur, W., Ben Hassine, S., Cachot, J., Budzinski, H., & Driss, M. R. (2014). Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environmental Science & Pollution Research, 21(10), 6290.CrossRefGoogle Scholar
  2. Bebianno, M. J., & Serafim, M. A. (2003). Variation of metal and metallothioneinconcentrations in a natural population of Ruditapes decussatus. Archives of Environmental Contamination and Toxicology, 44, 53–56.CrossRefGoogle Scholar
  3. Bebianno, M. J., Geret, F., Hoarau, P., Serafim, M. A., Coelho, M. R., Gnassia-Barelli, M., et al. (2004). Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers, 9, 305–330.CrossRefGoogle Scholar
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  5. Clairborne, A. (1985). Catalase activity. In R. A. Greenwald (Ed.), CRC handbook of methods in oxygen radical research (pp. 283–284). Boca Raton: CRC Press.Google Scholar
  6. Cribb, A. E., Leeder, J. S., & Spielberg, S. P. (1989). Use of a microplate reader in an assay of glutathione reductase using 5,5-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 183, 195–196.CrossRefGoogle Scholar
  7. Delay, M., & Frimmel, F. H. (2012). Nanoparticles in aquatic systems. Analytical and Bioanalytical Chemistry, 402(2), 583–592. doi: 10.1007/s00216-011-5443-z.CrossRefGoogle Scholar
  8. Ensibi, C., Pérez-López, M., Rodríguez, F. S., Míguez-Santiyán, M. P., Daly Yahya, M. N., & Hernández-Moreno, D. (2013). Effects of deltamethrin on biometric parameters and liverbiomarkers in common carp (Cyprinus carpio L.). Environmental Toxicology and Pharmacology, 36, 384–391.CrossRefGoogle Scholar
  9. Farkasa, J., Christian, P., Gallego-Urrea, J. A., Roose, N., Hassellöv, M., Tollefsen, K. E., & Thomas, K. V. (2011). Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology, 101(1), 117–125.CrossRefGoogle Scholar
  10. Figueira, E., Cardoso, P., & Freitas, R. (2012). Ruditapes decussatus and Ruditapes philippinarum exposed to cadmium: toxicological effects and bioaccumulation patterns. Comparative Biochemistry and Physiology, Part C, 156, 80–86.Google Scholar
  11. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139.Google Scholar
  12. Hayes, J. D., & McLellan, L. I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defense against oxidative stress. Free Radical Research, 31, 273–300.CrossRefGoogle Scholar
  13. Hidouri, S. (2017). Possible domestication of uranium oxides using biological assistance reduction. Saudi Journal of Biological Sciences, 24, 1–10.CrossRefGoogle Scholar
  14. Hidouri, S., Baccar, Z. M., Abdelmelek, H., Noguer, T., Marty, J. L., & Campàs, M. (2011). Structural and functional characterisation of a biohybrid material based on acetylcholinesterase and layered double hydroxides. Talanta, 85(4), 1882–1887. doi: 10.1016/j.talanta.2011.07.026.CrossRefGoogle Scholar
  15. Lionetto, M.G., Caricato, R., Calisi, A., Giordano, M.E., Schettino, T. (2013). Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. BioMed Research International. Article ID 321213. 10.1155/2013/321213
  16. Lykkesfeldt, J. (2007). Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica Chimica Acta, 380, 50–58. doi: 10.1016/j.cca.2007.01.028.CrossRefGoogle Scholar
  17. Martin, H. L., & Teismann, P. (2009). Glutathione, a review on its role and significance in Parkinson’s disease. The FASEB Journal, 23(10), 3263–3272. doi: 10.1096/fj.08-125443.CrossRefGoogle Scholar
  18. Mohseniazar, M., Barin, M., Zarredar, H., Alizadeh, S., & Shanehband, D. (2011). Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts., 1(3), 149–152.Google Scholar
  19. Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environmental International, 32, 967–976. doi: 10.1016/j.envint.2006.06.014.CrossRefGoogle Scholar
  20. Pei, D., Ding, J., Duan, Z., Li, M., Feng, Y., & Li, C. (2012). Cloning and expression of a tomato glutathione S-transferase (GST) in Escherichia coli. African Journal of Biotechnology, 11(23), 6402–6408. doi: 10.5897/AJB12.143.Google Scholar
  21. Qiao, M., Kisgati, M., Cholewa, J. M., Zhu, W., Smart, E. J., Sulistio, M. S., & Asmis, R. (2007). Increased expression of glutathione reductase in macrophages decreases atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Arteriosclerosi Thrombosis and Vascular Biology, 27, 1375–1382. doi: 10.1161/ATVBAHA.107.142109.CrossRefGoogle Scholar
  22. Recknagel, R. O., Glende, E. A., Walker, R. L., & Lowery, K. (1982). Lipid peroxidation biochemistry measurement and significance in liver cell injury. In G. L. Plaa & W. R. Hewitt (Eds.), Toxicology of the liver (pp. 218–232). New York: Raven Press.Google Scholar
  23. Rosenberry, T. L. (1975). Acetylcholinesterase advances in enzymology and related areas of molecular. Journal of Biology, 43, 103–218.Google Scholar
  24. Šinko, G., Vrček, I. V., Goessler, W., Leitinger, G., Dijanošić, A., & Miljanić, S. (2014). Alteration of cholinesterase activity as possible mechanism of silver nanoparticle toxicity. Environmental Sciences and Pollution Research, 21, 1391–1400. doi: 10.1007/s11356-013-2016-z.CrossRefGoogle Scholar
  25. Trevisan, R., Delapedra, G., Mello, D. F., Arl, M., Schmidt, É. C., Meder, F., Monopoli, M., et al. (2014). Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquatic Toxicology, 153, 27–38.CrossRefGoogle Scholar
  26. Waggiallah, H., & Alzohairy, M. (2011). The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics. Journal of Medical Sciences, 3(7), 344–347. doi: 10.4297/najms.2011.3344.Google Scholar
  27. Zhao, Y., Dou, J., Wu, T., & Aisa, H. A. (2013). Investigating the antioxidant and acetylcholinesterase inhibition activities of gossypium herbaceam. Molecules, 18, 951–962. doi: 10.3390/molecules18010951.CrossRefGoogle Scholar
  28. Zohra, B. S., & Habib, A. (2016). Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environmental Science and Pollution Research International, 23, 13954. doi: 10.1007/s11356-016-6534-3.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Slah Hidouri
    • 1
    • 3
    Email author
  • Chérif Ensibi
    • 2
  • Ahmed Landoulsi
    • 1
  • Mohamed Néjib Daly-Yahia
    • 2
  1. 1.Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of BizerteCarthage UniversityBizerteTunisia
  2. 2.Marine Biology, Research Group: Biodiversity and Functioning of Aquatic Systems, Faculty of Sciences of BizerteCarthage UniversityBizerteTunisia
  3. 3.Department of Research, Faculty of Sciences of BizerteCarthage UniversityBizerteTunisia

Personalised recommendations