Skip to main content
Log in

Adsorption of Toxic Metals on Modified Polyacrylonitrile Nanofibres: A Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Removal of toxic metals from aqueous solutions is of high priority in environmental chemistry. Most of the available techniques for this task are considered expensive; however, the adsorption process has been considered the easiest and the cheapest way of removing toxic metals from aqueous solution. The performance of adsorption setup largely depends on the characteristic of adsorbents. One of these characteristic is availability of large surface area. The more the available sites for chelation, the more the amount of metals removed. Therefore, the production of materials of nanoscale is expedient for adsorption purposes. Electrospinning process is one of the technologies that have been employed to produce polyacrylonitrile nanofibres (PAN-nfs). Moreover, PAN-nfs surfaces have also been chemically modified so as to introduce chelating groups such as amine, carboxyl, imines, etc. Here we review PAN-nfs as metal ion adsorbent. With characteristics such as high surface area as well as good mechanical strength, modified PAN-nfs are considered good adsorbents and have been used to remove toxic metals such as cadmium, lead, chromium, mercury, uranium, silver and copper in different ion states from their aqueous solutions. The ease of immobilization of metal-specific ligands on PAN-nfs has been of great interest in selective extraction of metal ions from their aqueous solutions. Also, toxic metals adsorbed on modified PAN-nfs can be recovered through desorption process using acids or bases of various concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anirudhan, T., Jalajamony, S., & Suchithra, P. (2009). Improved performance of a cellulose-based anion exchanger with tertiary amine functionality for the adsorption of chromium(VI) from aqueous solutions. Colloids Surface Application, 335, 107–113.

    Article  CAS  Google Scholar 

  • Bode-Aluko, C. A., Pereao, O., Fatoba, O., & Petrik, L. (2016). Surface-modified polyacrylonitrile nanofibres as supports. Polymer Bulletin. doi:10.1007/s00289-016-1830-0.

    Google Scholar 

  • Chen, J. P., Hong, L. A., Wu, S. N., & Wang, L. (2002). Elucidation of interactions between metal ions and Ca-alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir, 18, 9413–9421.

    Article  CAS  Google Scholar 

  • Chen, Z., Feng, X., Han, D., Wang, L., Cao, W., & Shao, L. (2014). Preparation of aminated polyacrylonitrile porous fiber mat and its application for Cr(VI) ion removal. Fibers and Polymers, 15, 1364–1368.

    Article  CAS  Google Scholar 

  • Comarmond, J., Payne, T., Harrison, J., Thiruvoth, S., Wong, H., Aughterson, R., Lumpkin, G., Müller, K., & Foerstendorf, H. (2011). Uranium sorption on various forms of titanium dioxide—influence of surface area, surface charge, and impurities. Environmental Science and Technology, 45, 5536–5542.

    Article  CAS  Google Scholar 

  • Coskun, R., Yigitoglu, M., & Sacak, M. (2000). Adsorption behavior of copper(II) ion from aqueous solution on methacrylic acid-grafted poly(ethylene terephthalate) fibers. Journal of Applied Polymer Science, 75, 766–772.

    Article  CAS  Google Scholar 

  • Dambies, L., Guimon, C., Yiacoumi, S., & Guibal, E. (2001). Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids Surface: A, 177, 203–214.

    Article  CAS  Google Scholar 

  • Deng, S., & Bai, R. (2003). Aminated polyacrylonitrile fibers for humic acid adsorption: behaviors and mechanisms. Environmental Science and Technology, 37, 5799–5805.

    Article  CAS  Google Scholar 

  • Deng, S., & Bai, R. (2004). Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Resources, 38, 2424–2432.

    CAS  Google Scholar 

  • Deng, S., Bai, R., & Chen, J. (2003a). Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir, 19, 5058–5064.

    Article  CAS  Google Scholar 

  • Deng, S., Bai, R., & Chen, J. (2003b). Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. Journal of Colloid and Interface Science, 260, 265–272.

    Article  CAS  Google Scholar 

  • Feng, Q., Wang, X., Wei, A., Wei, Q., Hou, D., Luo, W., Liu, X., & Wang, Z. (2011). Surface modified polyacrylonitrile nanofibers and application for metal ions chelation. Fibers and Polymers, 12, 1025–1029.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Gupta, M., Gupta, B., Oppermann, W., & Hardtmann, G. (2004). Surface modification of polyacrylonitrile staple fibers via alkaline hydrolysis for superabsorbent applications. Journal of Applied Polymer Science, 91, 3127–3133.

    Article  CAS  Google Scholar 

  • Hong, G., Li, X., Shen, L., Wang, M., Wang, C., Yu, X., & Wang, X. (2015). High recovery of lead ions from aminated polyacrylonitrile nanofibrous affinity membranes with micro/nano structure. Journal of Hazardous Materials, 295, 161–169.

    Article  CAS  Google Scholar 

  • Horzum, N., Shahwan, T., Parlak, O., & Demir, M. (2012). Synthesis of amidoximated polyacrilonitrile fibers and its application for sorption of aqueous uranyl ions under continues flow. Chemical Engineering Journal, 213, 41–49.

    Article  CAS  Google Scholar 

  • Huang, F., Xu, Y., Liao, S., Yang, D., Hsieh, Y., & Wei, Q. (2013). Preparation of amidoxime polyacrylonitrile chelating nanofibers and their application for adsorption of metal ions. Materials, 6, 969–980.

    Article  CAS  Google Scholar 

  • Jin, L., & Bai, R. B. (2002). Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 18, 9765–9770.

    Article  CAS  Google Scholar 

  • Kampalanonwat, P., & Supaphol, P. (2010). Preparation and adsorption behavior of aminated electrospun polyacrilonitrile nanofiber mats for heavy metal Ion removal. Applied Materials and Interphases, 2(12), 3619–3627.

    Article  CAS  Google Scholar 

  • Kampalanonwat, P., & Supaphol, P. (2011). Preparation of hydrolyzed electrospun polyacrylonitrile fiber mats as chelating substrates: a case study on copper(II) ions. Industrial and Engineering Chemistry Research, 50, 11912–11921.

    Article  CAS  Google Scholar 

  • Kampalanonwat, P., & Supaphol, P. (2014). The study of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofiber mats. Energy Procedia, 56, 142–151.

    Article  CAS  Google Scholar 

  • Ko, Y., Choi, U., Park, Y., & Woo, J. (2004). Fourier transform infrared spectroscopy study of the effect of pH on anion and cation adsorption onto poly(acryloamidinodiethylenediamine). Journal of Polymer Science Part A: Polymer Chemistry, 42, 2010–2018.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physicochemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98.

    Article  CAS  Google Scholar 

  • Lacour, S., Bollinger, J. C., Serpaud, B., Chantron, P., & Arcos, R. (2001). Removal of heavy metals in industrial waste waters by ion-exchanger grafted textiles. Analytica Chimica Acta, 16, 899–905.

    Google Scholar 

  • Martínez, J., Rodríguez-Castellon, E., Sanchez, R., Denaday, L., Buldaina, G., & Dall’ Orto, V. (2011). XPS studies on the Cu(I, II)-polyampholyte heterogeneous catalyst: an insight into its structure and mechanism. Journal of Molecular Catalysis A: Chemical, 339, 43–51.

    Article  Google Scholar 

  • Mosser, C., Mosser, A., Romeo, M., Petit, S., & Decarreau, A. (1992). Natural and synthetic copper phyllosilicates studied by XPS. Clays and Clay Minerals, 40, 593–599.

    Article  CAS  Google Scholar 

  • Ndayambaje, G., Laatikainen, K., Laatikainen, M., Beukes, E., Fatoba, O., Van der Walt, N., Petrik, L., & Sainio, T. (2016). Adsorption of nickel(II) on polyacrylonitrile nanofiber modified with 2-(20-pyridyl)imidazole. Chemical Engineering Journal, 284, 1106–1116.

    Article  CAS  Google Scholar 

  • Neghlani, P., Rafizadeh, M., & Taroni, F. (2011). Preparation of aminated-polyacrilonitrile nanofiber membranes for the adsorption of metal ions: comparison with microfibers. Journal of Hazardous Materials, 186, 182–189.

    Article  CAS  Google Scholar 

  • Ng, J., Cheung, W., & McKay, G. (2002). Equilibrium studies of the sorption of Cu(II) ions onto chitosan. Journal of Colloid and Interface Science, 255, 64–74.

    Article  CAS  Google Scholar 

  • Pekel, N., & Guven, O. (2003). Separation of uranyl ions with amidoximated poly(acrylonitrile/N-vinylimidazole) complexing sorbents. Colloids and Surfaces a Physicochemical Engineering Aspects, 212, 155–161.

    Article  CAS  Google Scholar 

  • Pekel, N., Sahiner, N., & Guven, O. (2000). Development of new chelating hydrogels based on N-vinyl imidazole and acrylonitrile. Radiation Physics and Chemistry, 59, 485–491.

    Article  CAS  Google Scholar 

  • Pels, J., Kapteijn, F., Moulun, J., Zhu, Q., & Thomas, K. (1995). Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 33, 1641–1653.

    Article  CAS  Google Scholar 

  • Pereao, O. K., Bode-Aluko, C., Ndayambaje, G., & Petrik, F. (2016). Electrospinning: polymer nanofibres adsorbent applications for metal ion removal. Journal of polymers and the environment. doi:10.1007/s10924-016-0896-y.

  • Sadeghi, S., Azhdari, H., Arabi, H., & Moghaddam, A. (2012). Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. Journal of Hazardous Materials, 215, 208–216.

    Article  Google Scholar 

  • Saeed, K., Haider, S., Oh, T., & Park, S. (2008). Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibres and their applications to metal ions adsorption. Journal of Membrane Science, 322, 400–405.

    Article  CAS  Google Scholar 

  • Saeed, K., Park, S., & Oh, T. (2011). Preparation of hydrazine-modified polyacrylonitrile nanofibers for the extraction of metal ions from aqueous media. Journal of Applied Polymer Science, 121, 869–873.

    Article  CAS  Google Scholar 

  • Shi, T., Wang, Z., Liu, Y., Jia, S., & Du, C. (2009). Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. Journal of Hazardous Materials, 161, 900–906.

    Article  CAS  Google Scholar 

  • Soltanzadeh, M., Kiani, G., & Khataee, A. (2013). Adsorptive capacity of polyacrylonitrile modified with triethylenetetramine for removal of copper and cadmium ions from aqueous solutions. Environmental Progress & Sustainable Energy, 00, 1–9.

    Google Scholar 

  • Sylwester, E. R., Hudson, E. A., & Allen, P. G. (2000). The structure of uranium(VI) sorption complexes on silica, alumina, and montmorillonite. Geochimica et Cosmochimica Acta, 64, 2431–2438.

    Article  CAS  Google Scholar 

  • Tombacz, E., Dobos, A., Szekeres, M., Narres, H., Klumpp, E., & Dekany, I. (2000). Effect of pH and ionic strength on the interaction of humic acid with aluminium oxide. Colloid Polymer Science, 278, 337–345.

    Article  CAS  Google Scholar 

  • Tutu, H., McCarthy, T., & Cukrowska, E. (2008). The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: the Witwatersrand Basin, South Africa as a case study. Applied Geochemistry, 23, 3666–3684.

    Article  CAS  Google Scholar 

  • Wang, J., Lv, X., Zhao, L., & Li, J. (2011). Removal of chromium from electroplating wastewater by aminated polyacrylonitrile fibers. Environmental Engineering Science, 28, 585–589.

    Article  Google Scholar 

  • Wang, J., Luo, C., Qi, G., Pan, K., & Cao, B. (2014). Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats. Applied Surface Science, 316, 245–250.

    Article  CAS  Google Scholar 

  • Wen, B., & Shan, X. (2002). Improved immobilization of 8-hydroxyquinoline on polyacrylonitrile fiber and application of the material to the determination of trace metals in seawater by inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 374, 948–954.

    Article  CAS  Google Scholar 

  • Winde, F. (2006). Challenges for sustainable water use in dolomitic mining regions of South Africa—a case study of uranium pollution. Part 1: sources and pathways. Physical Geography, 27(4), 333–347.

    Article  Google Scholar 

  • Winde, F., & Sandham, L. (2004). Uranium pollution in south Africa streams. An overview of the situation on gold mining area of the Witwaterstrands. Geojournal Kluiver Academic Publishers, 61, 131–149.

    Article  Google Scholar 

  • Yakshin, V., Tsarento, N., Koshcheev, A., Tananaev, I., & Myasoedov, B. (2010). Selective extraction of uranium from hydrochloric acid solutions with macrocyclic endoreceptors. Radiochemistry, 52(4), 358–362.

    Article  CAS  Google Scholar 

  • Zhang, X., & Bai, R. (2002). Deposition of colloids to surface-modified granules: effect of surface interactions. Langmiur, 18, 3459–3465.

    Article  CAS  Google Scholar 

  • Zhang, X., & Bai, R. (2003). Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. Journal of Colloid Interface Science, 264, 30–38.

    Article  CAS  Google Scholar 

  • Zou, W., Zhao, L., & Han, R. (2009). Removal of uranium(VI) by fixed bed ion-exchange column using natural zeolite coated with manganese oxide. China Journal Chemical Engineering, 17, 585–593.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Environmental and Nano Sciences Research Group, Department of Chemistry, University of the Western Cape, South Africa, and Water Research Commission for the providing the fund for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Ademola Bode-Aluko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bode-Aluko, C.A., Pereao, O., Ndayambaje, G. et al. Adsorption of Toxic Metals on Modified Polyacrylonitrile Nanofibres: A Review. Water Air Soil Pollut 228, 35 (2017). https://doi.org/10.1007/s11270-016-3222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3222-3

Keywords

Navigation