How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia)

  • D. Archundia
  • C. Duwig
  • L. Spadini
  • G. Uzu
  • S. Guédron
  • M. C. Morel
  • R. Cortez
  • O. Ramos Ramos
  • J. Chincheros
  • J. M. F. Martins


Cities in developing countries encounter rapid waves of social transformation and economic development where the environment is mostly a neglected aspect. The Katari watershed encompasses mining areas, El Alto city (one of the fastest growing urban areas in South America and the biggest in the Altiplano) as well as agricultural areas. Its outlet is Cohana Bay, one of the most polluted areas of Lake Titicaca. Here we propose an integrative approach (hydrological, physicochemical, chemical and bacterial data) to understand the pollution problem of this developing area, in which a variety of anthropogenic activities takes place. Both mining and urban areas appear to be sources of metal pollution. Nutrient and bacterial contaminations are mainly related to urban and industrial discharges. These situations have impacts in the basin from the mining area down to Cohana Bay of Lake Titicaca. Pollutant concentration patterns are highly influenced by seasonal hydrology variations. The poor quality of surface waters in the basin represents a risk for human and animal populations, as well as for the quality of aquifers located underneath El Alto city.


Surface water contamination Trace metals Coliforms Watershed Bolivia 



This project was partly funded by LABEX OSUG@2020, ANR grant no. ANR-10-LABX-56 (financed by the Future Investments programme launched by the French government and implemented by the ANR). We thank the University of San Andres (UMSA, La Paz) and the National Council for Science and Technology (CONACYT, Mexico) for the support given to this project through PhD funding. We thank the Bolivian SENAMHI (Servicio Nacional de Meteorología e Hidrología) for their technical assistance. We also acknowledge the French National research programme EC2CO Ecodyn of CNRS-INSU for its financial support.

Supplementary material

11270_2016_3217_MOESM1_ESM.docx (52 kb)
ESM 1 (DOCX 52 kb)
11270_2016_3217_MOESM2_ESM.docx (752 kb)
ESM 2 (DOCX 751 kb)


  1. Ahlfeld, F., & Schneider-Scherbina, A. (1964). Los Yacimientos Minerales y de hidrocarburos de Bolivia. Boletin No. 5. La Paz: Departamento Nacional de Geología; Ministerio de Minas y Petróleo.Google Scholar
  2. Alves, R. I. S., Sampaio, C. F., Nadal, M., Schuhmacher, M., Domingo, J. L., & Segura-Muñoz, S. I. (2014). Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environmental Research, 133, 149–155. doi: 10.1016/j.envres.2014.05.012.CrossRefGoogle Scholar
  3. Anton, D. J. (1993). Thirsty cities: urban environments and water supply in Latin America. IDRC.Google Scholar
  4. Arbona, J. M., & Khol, B. (2004). City profile La Paz–El Alto. Elsevier, 21, 255–265.Google Scholar
  5. Banks, D., Markland, H., Smith, P. V., Mendez, C., Rodriguez, J., Huerta, A., & Sæther, O. M. (2004). Distribution, salinity and pH dependence of elements in surface waters of the catchment areas of the Salars of Coipasa and Uyuni, Bolivian Altiplano. Journal of Geochemical Exploration, 84, 141–166. doi: 10.1016/j.gexplo.2004.07.001.CrossRefGoogle Scholar
  6. Buxton, N., Escobar, M., Purkey, D., & Lima, N. (2013). Water scarcity, climate change and Bolivia: planning for climate uncertainties. Davis: Stockholm Environment Institute.Google Scholar
  7. Caballero, Y., Jomelli, V., Chevallier, P., & Ribstein, P. (2002). Hydrological characteristics of slope deposits in high tropical mountains (Cordillera Real, Bolivia). Catena, 47, 101–106.CrossRefGoogle Scholar
  8. Chiqui, F. R. R. (2001). Evaluación del Río Pallina, en relación a su calidad de aguas en la zona urbana de Viacha. La Paz.Google Scholar
  9. Chiron, S., & Duwig, C. (2016). Biotic nitrosation of diclofenac in a soil aquifer system (Katari watershed, Bolivia). Science of the Total Environment, 565, 473–480.CrossRefGoogle Scholar
  10. Chudnoff, S. M. (2006). A water quality assessment of the Rio Katari river and its principle tributaries, Bolivia (B.S. Earth and Environmental Science - Geology Option). New Mexico Institute of Mining and Technology.Google Scholar
  11. Clapperton, C. M. (1993). Quaternary geology and geomorphology of South America. Amsterdam: Elsevier.Google Scholar
  12. Condom, T. (2002). Dynamiques d’extension lacustre et glaciaire associées aux modifications du climat dans les Andes Centrales. (PHD Science of the Earth). Docteur de l’Université Paris VI, Paris.Google Scholar
  13. Coudrain-Ribstein, A., Olive, P., Quintanilla, J., Sondag, F., Cahuaya, D. (1995). Salinity and isotopic dynamics of the groundwater resources on the Bolivian Altiplano. Application of Tracers in Arid Zone Hydrology, Proceedings of the Vienna Symposium. IAHS Publication, 232, 267–276.Google Scholar
  14. E.U. (2009). European communities environmental objectives (surface waters) regulations. S.I. No. 272 of 2009. FAO.Google Scholar
  15. FAO (2005). FAO, land and water digital media series n5; soil and terrain database for Latin America and the Carribean—1:5 million scale.Google Scholar
  16. Fewtrell, L., & Bartram, J. (2001). Water quality guidelines, standards, and health: assessment of risk and risk management for water-related infectious disease. London: IWA Publications.Google Scholar
  17. Fonturbel, F. (2005). Physico-chemical and biological indicators of the eutrophication process at Titicaca Lake (Bolivia). Ecología Aplicada, 2005, 135–141.Google Scholar
  18. GEOBOL (1995a). Hoja geológica La Paz, #5944; escala 1:100000. Carta Geológica de Bolivia, Servicio Geológico de Bolivia.Google Scholar
  19. GEOBOL (1995b). Hoja geológica Milluni, #5945; escala 1:100000. Carta Geológica de Bolivia, Servicio Geológico de Bolivia.Google Scholar
  20. Gomez, E. (2012). Caracterisacion hidrogeoquimica del sistema acuífero Purapurani (El Alto). Master thesis, Universidad Mayor Real Pontificada de San Francisco Javier de Chuquisaca.Google Scholar
  21. Guédron, S., Duwig, C., Prado, B. L., Point, D., Flores, M. G., & Siebe, C. (2014). (Methyl)mercury, arsenic, and lead contamination of the world’s largest wastewater irrigation system: the Mezquital Valley (Hidalgo State—Mexico). Water, Air, and Soil Pollution, 225, 2045. doi: 10.1007/s11270-014-2045-3.CrossRefGoogle Scholar
  22. Guzmán, J. M., Rodríguez, J., Martínez, J., Contreras, J. M., & González, D. (2006). The demography of Latin America and the Caribbean since 1950/La Demografia de América latina y del Caribe Desde 1950/La démographie de l’Amérique Latine et des Caraïbes depuis 1950. Population, English edition, 61, 519–620.CrossRefGoogle Scholar
  23. Hardy, S., Valton, C., Guislain, S., & Larrazãbal Cãrdova, N. (2015). Atlas de la vulnerabilidad de la aglomeración de La Paz. France: IRD Editions.Google Scholar
  24. Harou, P. (1995). Wetlands economics and land use. In: Environmental and land use issues, CIHEAM-EAAE. 540 pGoogle Scholar
  25. IDH-UMSA (2014). Manejo de la Caracterización del Recurso Suelo Agrícola y Agua para el Consumo Humano/Riego del Municipio de Colquencha, La Paz - Bolivia.Google Scholar
  26. IDH-UMSA (2013). Valoración de metales pesados en la cuenca del Río Katari y su impacto en la calidad de vida del área de influencia. La Paz-Bolivia.Google Scholar
  27. Jauregui, J. (1969). Estudio geológico minero de la región Milluni—Zongo. Tesis de grado, Facultad de Ciencias Geológicas U.M.S.A. (T-406).Google Scholar
  28. Jiménez, L. F. (1996). La experiencia de ajuste durante la década de los ochenta en Latinoamérica, sus consecuencias distributivas y el diseño de políticas sociales. Desarrollo con Equidad. CEPAL. Santiago de Chile.Google Scholar
  29. Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3–14. doi: 10.1016/j.scitotenv.2004.09.002.CrossRefGoogle Scholar
  30. Lassabatere, L., Spadini, L., Delolme, C., Février, L., Galvez Cloutier, R., & Winiarski, T. (2007). Concomitant Zn—Cd and Pb retention in a carbonated fluvio-glacial deposit under both static and dynamic conditions. Chemosphere, 69, 1499–1508.CrossRefGoogle Scholar
  31. Limpias, F. (2010). Impacto de la ciudad de El Alto en el campo de pozos Tilata. Tesis de Postgrado. Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca.Google Scholar
  32. Loza Herrera, S., Meneses, R., & Anthelme, F. (2015). Comunidades vegetales de los bofedales de la Cordillera Real (Bolivia) bajo el calentamiento global. Ecologia en Bolivia, 50, 39–56.Google Scholar
  33. Mason, C. (2002). Biology of freshwater pollution (4th ed.). New York: Prentice Hall.Google Scholar
  34. Mason, J. P., Sebree, S. K., Quinn, T. L. (2005). Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming. US Department of the Interior, US Geological Survey.Google Scholar
  35. Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419. doi: 10.1021/es00020a008.CrossRefGoogle Scholar
  36. Mazurek, H. (2012). El censo en Bolivia, una herramienta de desarrollo. T’inkazos, 15; 32: Coordination du numéro spécial sur les recensements.Google Scholar
  37. McMichael, A. J. (2000). The urban environment and health in a world of increasing globalization: issues for developing countries. Bulletin of the World Health Organization, 78, 1117–1126.Google Scholar
  38. MEEDD & Agences de l’eau (2003). Système d’évaluation de la qualité de l’eau des cours d’eau. Rapport de presentation SEQ-Eau (Version 2).Google Scholar
  39. MMAyA (2013). Planes Maestros Metropolitanos de Agua Potable y Saneamiento de Cochabamba, La Paz y El Alto, Santa Cruz y el Valle Central de Tarija (Bolivia). La Paz.Google Scholar
  40. MMAyA. (2011). Informe final Proyecto Plan Director Cuenca KAtari, Fase 1. La Paz: Viceministerio de Recursos Hidricos y Riego.Google Scholar
  41. Monroy, M., Maceda-Veiga, A., & de Sostoa, A. (2014). Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Science of the Total Environment, 487, 233–244. doi: 10.1016/j.scitotenv.2014.03.134.CrossRefGoogle Scholar
  42. Mourguiart, P., Wirrmann, D., Fournier, M., & Servant, M. (1992). Reconstruction quantitative des niveaux du petit lac Titicaca au cours de l’Holocene. Compte Rendu de l’Académie de Sciences de Paris, 315, 875–880.Google Scholar
  43. Muriel, C. (1967). Estudio geológico y mineralógico de la región de Milluni. Tesis de grado, Facutlad de Ciencias Geológicas U.M.S.A. (T-80).Google Scholar
  44. Naicker, K., Cukrowska, E., & McCarthy, T. (2003). Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution, 122, 29–40. doi: 10.1016/S0269-7491(02)00281-6.
  45. NorthCote, T. G., Morales, S. P., Zea, W., Vazquez, M. E. (1989). Effects of eutrophication on physical conditions. In: Pollution in Lake Titicaca, Peru. Westwater Research Centre, Univ. Dril. Columbia, Vancouver, pp. 19–31.Google Scholar
  46. Perez, W. (2015). Dos toneladas de ranas, peces y aves mueren en el Titicaca. La Razon 26/04/2015. La PazGoogle Scholar
  47. PNUMA (2011). Perspectivas del medio ambiente en el sistema hidrico Titicaca-Desaguadero-Poopo-Salar de Coipasa (TDPS). PNUMA.Google Scholar
  48. PNUMA (2008). Perspectivas del Medio Ambiente Urbano: GEO El Alto. Proyecto GEO ciudades.Google Scholar
  49. Ramos Ramos, O. E., Rötting, T. S., French, M., Sracek, O., Bundschuh, J., Quintanilla, J., & Bhattacharya, P. (2014). Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers and surface waters in the Antequera and Poopó mining regions, Bolivian Altiplano. Journal of Hydrology, 518, 421–433. doi: 10.1016/j.jhydrol.2014.08.019.CrossRefGoogle Scholar
  50. Reglamentos a la ley de medio ambiente (1996). Gaceta oficial de Bolivia. La Paz.Google Scholar
  51. Ribera Arismendi, M. A. (2010). La Bahía de Cohana. Actualización 2009–2010. –La Paz: Serie de estudios de caso sobre problemáticas socio ambientales en Bolivia No 1. LIDEMA. 78p.Google Scholar
  52. Salvarredy-Aranguren, M. M., Probst, A., Roulet, M., & Isaure, M.-P. (2008). Contamination of surface waters by mining wastes in the Milluni Valley (Cordillera Real, Bolivia): mineralogical and hydrological influences. Applied Geochemistry, 23, 1299–1324. doi: 10.1016/j.apgeochem.2007.11.019.CrossRefGoogle Scholar
  53. SENAMHI (2015). Servicio nacional de hidrologia y metrologia. La Paz.Google Scholar
  54. Smolders, A. J. P., Guerrero Hiza, M. A., van der Velde, G., & Roelofs, J. G. M. (2002). Dynamics of discharge, sediment transport, heavy metal pollution and Sabalo (Prochilodus lineatus) catches in the lower Pilcomayo river (Bolivia). River Research and Applications, 18, 415–427. doi: 10.1002/rra.690.CrossRefGoogle Scholar
  55. Sullivan, A. B., & Drever, J. I. (2001). Spatiotemporal variability in stream chemistry in a high-elevation catchment affected by mine drainage. Journal of Hydrology, 252, 237–250.CrossRefGoogle Scholar
  56. Soruco, A. (2012). Medio siglo de fluctuaciones glaciares en la Cordillera Real y sus efectos hidrologicos en la ciudad de La Paz. La Paz: Institute de Recherche pour le Développement Editions, IRD.Google Scholar
  57. Sosa, A. J., Byarugaba, D. K., Amábile-Cuevas, C. F., Hsueh, P.-R., Kariuki, S., & Okeke, I. N. (Eds.). (2010). Antimicrobial resistance in developing countries. New York: Springer New York.Google Scholar
  58. Strosnider, W. H. J., Llanos López, F. S., & Nairn, R. W. (2011). Acid mine drainage at Cerro Rico de Potosí I: unabated high-strength discharges reflect a five century legacy of mining. Environment and Earth Science, 64, 899–910. doi: 10.1007/s12665-011-0996-x.CrossRefGoogle Scholar
  59. Tekile, A., Kim, I., & Kim, J. (2015). Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River. Journal of Environmental Sciences, 30, 113–121. doi: 10.1016/j.jes.2014.10.014.CrossRefGoogle Scholar
  60. Tícona, W., Blanco, M., Ticona, J., & Cabrera, S. (2012). Investigación y desarrollo de materiales arcillosos parte I: Caracterización química, mineralógica y estructural de arcillas de Viacha y Kellani. Revista Boliviana de Quimica, 29, 139–146.Google Scholar
  61. UAC Batallas (2010). Diagnostico de salud de la poblacion de las comunidades de Cohana. Municipios de Pucarani y Puerto Pérez Provincia Los Andes.Google Scholar
  62. WHO. (2011). Guidelines for drinking-water quality. Geneva: World Health Organization.Google Scholar
  63. WHO. (1996). Health criteria and other supporting information. Geneva: World Health Organization.Google Scholar
  64. Zeballos, A. (2009). Aplicación de los recursos no-metálicos de la localidad de Micaya, Provincia Aroma, Departamento de La Paz. (Tesis de grado). La Paz: Facultad de Ciencias Geológicas, Carrera de Ciencias Geológicas, Universidad Mayor de San Andrés.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, IRD, CNRS, IGEGrenobleFrance
  2. 2.Univ. Grenoble Alpes, IRD, CNRS, ISTERREGrenobleFrance
  3. 3.CNAM, Laboratoire d’analyses chimiques et bio analysesParis Cedex 3France
  4. 4.Instituto de Geología y Medio Ambiente (IGEMA)Universidad Mayor de San AndrésLa PazBolivia
  5. 5.Instituto de Investigaciones Químicas (IIQ)Universidad Mayor de San AndrésLa PazBolivia
  6. 6.Instituto de Biología, Laboratorio de Calidad Ambiental (LCA)Universidad Mayor de San AndrésLa PazBolivia
  7. 7.Consejo Nacional de Ciencia y Tecnologia (CONACYT)México, D.F.Mexico
  8. 8.ERNO, Instituto de GeologiaHermosilloMexico

Personalised recommendations