Isolation and Characterization of Altererythrobacter sp. DT for Biotreatment of and Sulfur Production from Thiosulfate-Bearing Industrial Wastewater

  • Xiang Yang GuEmail author
  • Pei Chong Dou


The objectives of the present study are to isolate thiosulfate-degrading bacterium and optimize its degradative conditions including temperature, pH, and thiosulfate concentrations required for bioremediation purposes. A heterotrophic thiosulfate-degrading bacterial strain DT was successfully isolated from saline soil and identified as Altererythrobacter sp. based on its physicochemical properties and 16S rDNA sequence analysis. It was a naturally occurring methionine auxotrophic strain that utilized only peptone, yeast extract, or several amino acids as the sole carbon source. Altererythrobacter sp. DT degraded thiosulfate via a distinctive disproportionation reaction which was characterized by accumulation of sulfate and elemental sulfur at a molar ratio of 1:1. Optimal conditions for both bacterial growth and thiosulfate metabolism were 25–30 °C and pH 6, respectively. In a fed-batch treatment system receiving liquid polysulfide wastewater, a high degradation rate of 407.3 mg S2O3 2−/(L h) and an elemental sulfur yield of nearly 50% were achieved for immobilized DT cells, indicating great potential of strain DT for future application in the treatment of and microbial production of elemental sulfur from thiosulfate-bearing industrial wastewater.


Thiosulfate Biodegradation Altererythrobacter Auxotroph Elemental sulfur Disproportionation 



The work described in this paper was fully supported by a research grant from the National Natural Science Foundation of China (project no. 50778089).


  1. Anandham, R., Indiragandhi, P., Madhaiyan, M., Chung, J., Ryu, K. Y., Jee, H. J., & Sa, T. (2007). Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Canadian Journal of Microbiology, 53(7), 869–876.CrossRefGoogle Scholar
  2. Bak, F., & Pfenning, N. (1987). Chemolithotrophic growth of Desulfovibrio sulfodismutants sp. nov. by disproportionation of inorganic sulfur compounds. Archives of Microbiology, 147, 184–189.CrossRefGoogle Scholar
  3. Baquerizo, G., Chaneac, A., Arellano-Garcia, L., Gonzalez-Sanchez, A., & Revah, S. (2013). Biological removal of high loads of thiosulfate using a trickling filter under alkaline conditions. Mine Water and the Environment, 32, 278–284.CrossRefGoogle Scholar
  4. Cord-Ruwisch, R. (1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Journal of Microbiological Methods, 4(1), 33–36.CrossRefGoogle Scholar
  5. Das, S. K., Mishra, A. K., Tindall, B. J., Rainey, F. A., & Stackebrandt, E. (1996). Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. International Journal of Systematic Bacteriology, 46(4), 981–987.CrossRefGoogle Scholar
  6. González-Lara, J. M., Roca, A., Cruells, M., & Patiño, F. (2009). The oxidation of thiosulfates with copper sulfate. Application to an industrial fixing bath. Hydrometallurgy, 95(1–2), 8–14.CrossRefGoogle Scholar
  7. González-Sánchez, A., Meulepas, R., & Revah, S. (2008). Sulfur formation and recovery in a thiosulfate-oxidizing bioreactor. Environmental Technology, 29(8), 847–853.CrossRefGoogle Scholar
  8. Jagushte, M. V., & Mahajani, V. V. (1999). Insight into spent caustic treatment: on wet oxidation of thiosulfate to sulfate. Journal of Chemical Technology and Biotechnology, 74(5), 437–444.CrossRefGoogle Scholar
  9. Jorgensen, B. B., & Bak, F. (1991). Pathway and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 57(3), 847–856.Google Scholar
  10. Julia, R. M., Takuichi, S., & Andrew, J. W. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795–799.Google Scholar
  11. Kadakol, J. C., Kamanavalli, C. M., & Shouche, Y. (2011). Biodegradation of carbofuran phenol by free and immobilized cells of Klebsiella pneumoniae ATCC13883T. World Journal of Microbiology and Biotechnology, 27(1), 25–29.CrossRefGoogle Scholar
  12. Kelly, D. P., & Wood, A. P. (1994). Synthesis and determination of thiosulfate and polythionates. Methods in Enzymology, 243, 475–501.CrossRefGoogle Scholar
  13. Kolmert, A., Wikstrom, P., & Hallberg, K. B. (2000). A fast and simple turbidometric method for the determination of sulfate in sulfate-reducing bacterial cultures. Journal of Microbiological Methods, 41(4), 179–184.CrossRefGoogle Scholar
  14. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21(4), 377–397.CrossRefGoogle Scholar
  15. Kwon, K. K., Woo, J. H., Yang, S. H., Kang, S. G., Kim, S. J., Sato, T., & Kato, C. (2007). Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2207–2211.CrossRefGoogle Scholar
  16. Lin, D. Q., & Gu, X. Y. (2009). Isolation, identification and characterization of thiosulfate-oxidizing bacterium TX. Microbiology, 36(11), 1638–1644 (In Chinese).Google Scholar
  17. Lin, B. L., Hosomi, M., & Murakami, A. (2002). Effects of high salinity and constituent organic compounds on treatment of photo-processing waste by a sulfur-oxidizing bacterial/granular activated carbon sludge system. Water Research, 36(4), 1076–1083.CrossRefGoogle Scholar
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.Google Scholar
  19. Meade, H. M., Long, S. R., & Ruvkun, G. B. (1982). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium melilotii induced by transposon Tn5 mutagenesis. Journal of Bacteriology, 149(1), 114–122.Google Scholar
  20. Narayan, K. D., Pandey, S. K., & Das, S. K. (2010). Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Current Microbiology, 61(4), 248–253.CrossRefGoogle Scholar
  21. Pandey, S. K., Narayan, K. D., Bandyopadhyay, S., Nayak, K., & Das, S. K. (2009). Thiosulfate oxidation by Comamonas sp. S23 isolated from a sulfur spring. Current Microbiology, 58(5), 516–521.CrossRefGoogle Scholar
  22. Pethkar, A. V., & Paknikar, K. M. (2003). Thiosulfate biodegradation-silver biosorption process for the treatment of photofilm processing wastewater. Process Biochemistry, 38(6), 855–860.CrossRefGoogle Scholar
  23. Roy, A. B., & Trudinger, P. A. (1970). The analysis of some sulfur compounds. In The biochemistry of inorganic compounds of sulphur (pp. 59–90). Cambridge: University Press.Google Scholar
  24. Schreiber, D. C., & Pavlostathis, S. G. (1998). Biological oxidation of thiosulfate in mixed heterotrophic/autotrophic cultures. Water Research, 32(5), 1363–1372.CrossRefGoogle Scholar
  25. Sorokin, D. K., Tourva, T. P., & Muyzer, G. (2005). Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Systematic and Applied Microbiology, 28(8), 679–687.CrossRefGoogle Scholar
  26. Spring, S., Jackel, U., Wagner, M., & Kampfer, P. (2004). Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Halemonella gracilis gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 54(1), 99–106.CrossRefGoogle Scholar
  27. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.CrossRefGoogle Scholar
  28. Tenc-Popovic, M. E., Bogunovic, L. J., Jankovic, D. D., & Velickovic, A. D. (1997). New synthesis of liquid polysulfide polymers in the presence of hydrazine. I. Synthesis of linear polysulfide polymers from 1,1′-[methylenebis (oxy)]-bis-[2-chloroethane] and sodium tetrasulfide. Journal of Polymer Science Part A: Polymer Chemistry, 35(8), 1363–1367.CrossRefGoogle Scholar
  29. Truper, H. G., & Schlegel, H. G. (1964). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek, 30(1), 225–238.CrossRefGoogle Scholar
  30. Vohra, M. S., Selimuzzaman, S. M., & Al-Suwaiyan, M. S. (2011). Aqueous phase thiosulfate removal using photo catalysis. International Journal of Environmental Research, 5(1), 247–254.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Key Laboratory of Microbiological Engineering of Agricultural Environments, Ministry of Agriculture/College of Life SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations