Advertisement

Water, Air, & Soil Pollution

, 227:437 | Cite as

Performance and Bacterial Community Shifts During Phosphogypsum Biotransformation

  • Mónica Martins
  • Ana Assunção
  • André Neto
  • Gonçalo Silva
  • Haïtham Sghaier
  • Maria Clara CostaEmail author
Article

Abstract

Phosphogypsum (PG) is an industrial waste composed mainly by sulfate, turning it a suitable sulfate source for sulfate-reducing bacteria (SRB). In the present work, the capability of two SRB communities, one enriched from Portuguese PG (culture PG) and the other from sludge from a wastewater treatment plant (culture WWT-1), to use sulfate from PG was compared. In addition, the impact of this sulfate-rich waste in the microbial community was assessed. The highest efficiency in terms of sulfate reduction was observed with culture WWT-1. The bacterial composition of this culture was not significantly affected when sodium sulfate from the nutrient medium was replaced by PG as a sulfate source. Next generation sequencing (NGS) showed that this community was phylogenetically diverse, composed by bacteria affiliated to Clostridium, Arcobacter, and Sulfurospirillum genera and by SRB belonging to Desulfovibrio, Desulfomicrobium, and Desulfobulbus genera. In contrast, the bacterial structure of the community enriched from PG was modified when sodium sulfate was replaced by PG as the sulfate source. This culture, which showed the poorest performance in the use of sulfate from PG, was mainly composed by SRB related to Desulfosporosinus genus. The present work provides new information regarding the phylogenetic characterization of anaerobic bacterial communities with the ability to use PG as sulfate donor, thus, contributing to improve the knowledge of microorganisms suitable to be used in PG bioremediation. Additionally, this paper demonstrates that an alternative to lactate and low-cost carbon source (wine wastes) can be used efficiently for that purpose.

Keywords

Biotransformation Phosphogypsum Phylogenetic characterization Sulfate-reducing bacteria 

Notes

Acknowledgments

Funding is by Fundação para a Ciência e a Tecnologia (FCT) through the Joint-Research Protocol Tunisia-Portugal and UID/Multi/04326/2013. The authors also want to acknowledge Quimiparque and the Groupe Chimique Tunisien (GCT) for providing PG samples of Portugal and Tunisia, respectively. The authors also want to acknowledge Jorge Carlier for the support in the molecular biology techniques.

References

  1. Azabou, S., Mechichi, T., & Sayadi, S. (2005). Sulphate reduction from phosphogypsum using a mixed culture of sulphate reducing bacteria. International Biodeterioration & Biodegradation, 56, 236–242. doi: 10.1016/j.ibiod.2005.09.003.CrossRefGoogle Scholar
  2. Azabou, S., Mechichi, T., Patel, B. K. C., & Sayadi, S. (2007). Isolation and characterization of a mesophilic heavy-metals-tolerant sulphate reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulphate source. Journal of Hazardous materials, 140, 264–270. doi: 10.1016/j.jhazmat.2006.07.073.CrossRefGoogle Scholar
  3. Barros, R. J., Jesus, C., Martins, M., & Costa, M. C. (2009). Marble stone processing powder residue as chemical adjuvant for the biologic treatment of acid mine drainage. Process Biochemistry, 44, 477–480. doi: 10.1016/j.procbio.2008.12.013.CrossRefGoogle Scholar
  4. Binnemans, K., Jones, P. T., Blanpain, B., Gerven, T. V., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production, 99, 17–38. doi: 10.1016/j.jclepro.2015.02.089.CrossRefGoogle Scholar
  5. Boothman, C., Hockin, S., Holmes, D. E., Gadd, G. M., & Lloyd, J. R. (2006). Molecular analysis of a sulphate-reducing consortium used to treat metal-containing effluents. Biometals, 19, 601–609. doi: 10.1007/s10534-006-0006-z.CrossRefGoogle Scholar
  6. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6, 1621–1624. doi: 10.1038/ismej.2012.8.CrossRefGoogle Scholar
  7. Carvalho, F. P. (1995). 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal. local enhancement of natural levels by wastes from phosphate ore processing industry. Science of the Total Environment, 159, 201–214. doi: 10.1016/0048-9697(95)04332-U.CrossRefGoogle Scholar
  8. Castillo, J., Pérez-López, R., Sarmiento, A. M., & Nieto, J. M. (2012). Evaluation of organic substrates to enhance the sulphate-reducing activity in phosphogypsum. Science of the Total Environment, 439, 106–113. doi: 10.1016/j.scitotenv.2012.09.035.CrossRefGoogle Scholar
  9. Costa, M. C., Santos, E. S., Barros, R. J., Pires, C., & Martins, M. (2009). Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere, 75, 831–836. doi: 10.1016/j.chemosphere.2008.12.062.CrossRefGoogle Scholar
  10. Cuadri, A. A., Navarroa, F. J., García-Morales, M., & Bolivar, J. P. (2014). Valorization of phosphogypsum waste as asphaltic bitumen modifier. Journal of Hazardous materials, 279, 11–16. doi: 10.1016/j.jhazmat.2014.06.058.CrossRefGoogle Scholar
  11. Deng, D., Weidhaas, J. L., & Lin, L.-S. (2016). Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. Journal of Hazardous materials, 305, 200–208. doi: 10.1016/j.jhazmat.2015.11.041.CrossRefGoogle Scholar
  12. Enamorado, S., Abril, J. M., Delgado, A., Más, J. L., Polvillo, O., & Quintero, J. M. (2014). Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. Journal of Hazardous materials, 266, 122–131. doi: 10.1016/j.jhazmat.2013.12.019.CrossRefGoogle Scholar
  13. Jasinski, S.M. (2011). Phosphate rock, mineral commodity summaries. In U.S. Geological Survey.Google Scholar
  14. Johnson, D. B., & Hallberg, K. B. (2005). Biogeochemistry of the compost bioreactor components of a composite AMD passive remediation system. Science of the Total Environment, 338, 81–93. doi: 10.1016/j.scitotenv.2004.09.008.CrossRefGoogle Scholar
  15. Martins, M., Faleiro, M. L., Barros, R. J., Veríssimo, A. R., Barreiros, M. A., & Costa, M. C. (2009a). Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage treatment. Journal of Hazardous materials, 166, 706–713. doi: 10.1016/j.jhazmat.2008.11.088.CrossRefGoogle Scholar
  16. Martins, M., Faleiro, M. L., Barros, R. J., Veríssimo, A. R., & Costa, M. C. (2009b). Biological sulphate reduction using food industry wastes as carbon sources. Biodegradation, 20, 559–567. doi: 10.1007/s10532-008-9245-8.CrossRefGoogle Scholar
  17. Martins, M., Faleiro, M. L., Silva, G., Chaves, S., Tenreiro, R., & Costa, M. C. (2011a). Dynamics of bacterial community in up-flow anaerobic packed bed system for acid mine drainage treatment using wine wastes as carbon source. International Biodeterioration & Biodegradation, 65, 78–84. doi: 10.1016/j.ibiod.2010.09.005.CrossRefGoogle Scholar
  18. Martins, M., Santos, E. S., Faleiro, M. L., Silva, G., Chaves, S., Tenreiro, R., Barros, R. J., Barreiros, A., & Costa, M. C. (2011b). Performance and bacterial community shifts during bioremediation of acid mine drainage from two Portuguese mines. International Biodeterioration & Biodegradation, 65, 972–981. doi: 10.1016/j.ibiod.2011.07.006.CrossRefGoogle Scholar
  19. Martins, M., Assunção, A., Martins, H., Matos, A. P., & Costa, M. C. (2013). Palladium recovery as nanoparticles by an anaerobic bacterial community. Journal of Chemical Technology and Biotechnology, 88, 2039–2045. doi: 10.1002/jctb.4064.Google Scholar
  20. Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6, 441–454. doi: 10.1038/nrmicro1892.Google Scholar
  21. Rutherford, P. M., Dudas, M. J., & Samek, R. A. (1994). Environmental impacts of phosphogypsum. Science of the Total Environment, 149, 1–38. doi: 10.1016/0048-9697(94)90002-7.CrossRefGoogle Scholar
  22. Rzeczycka, M., Suszek, A., & Błaszczyk, M. (2004). Biotransformation of phosphogypsum by sulphate-reducing bacteria in media containing different zinc salts. Polish Journal of Environmental Studies, 13, 209–217.Google Scholar
  23. Sànchez-Andrea, I., Stams, A. J. M., Hedrich, S., Nancucheo, I., & Johnson, D. B. (2015). Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles, 19, 39–47. doi: 10.1007/s00792-014-0701-6.CrossRefGoogle Scholar
  24. Shao, D., Kang, Y., Wu, S., & Wong, M. H. (2012). Effects of sulfate reducing bacteria and sulfate concentration on mercury methylation in freshwater sediments. Science of the Total Environment, 424, 331–336. doi: 10.1016/j.scitotenv.2011.09.042.CrossRefGoogle Scholar
  25. Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., & López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of Environmental Management, 90, 2377–2386. doi: 10.1016/j.jenvman.2009.03.007.CrossRefGoogle Scholar
  26. Thabet, O., Fardeau, M., Suarez-Nuñez, C., Hamdi, M., Thomas, P., Ollivier, B., & Alazard, D. (2007). Desulfovibrio marinus sp. nov., a moderately halophilic sulphate-reducing bacterium isolated from marine sediments in Tunisia. International Jpurnal of System Evolution Microbiology, 57, 2167–2170. doi: 10.1099/ijs.0.64790-0.CrossRefGoogle Scholar
  27. US EPA. (1999). United States Environmental Protection Agency. Background report on fertilizer use, contaminants and regulations. Office of pollution, Prevention and toxics 747-R-93-003, Washington D. C.Google Scholar
  28. Winch, S., Mills, H. J., Kostka, J. E., Fortin, D., & Lean, D. R. (2009). Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. FEMS Microbiology Ecology, 68, 94–107. doi: 10.1111/j.1574-6941.2009.00658.x.CrossRefGoogle Scholar
  29. Wolicka, D., & Borkowski, A. (2009). Phosphogypsum biotransformation in cultures of sulphate reducing bacteria in whey. International Biodeterioration & Biodegradation, 63, 322–327. doi: 10.1016/j.ibiod.2008.09.011.CrossRefGoogle Scholar
  30. Wolicka, D., & Kowalski, W. (2006). Biotransformation of phosphogypsum on distillery decoctions (preliminary results). Polish Journal of Microbiology, 55, 147–151.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal
  2. 2.Instituto de Tecnologia Química e Biológica (ITQB)Universidade Nova de LisboaOeirasPortugal
  3. 3.Natural Resources InstituteUniversity of GreenwichKentUK
  4. 4.Laboratory “Energy and Matter for Development of Nuclear Sciences” (LR16CNSTN02)National Center for Nuclear Sciences and Technology (CNSTN)Sidi Thabet TechnoparkTunisia
  5. 5.Laboratory “Biotechnology and Nuclear Technology” (LR16CNSTN01) & Laboratory “Biotechnology and Bio-Geo Resources Valorization” (LR11ES31)Sidi Thabet TechnoparkTunisia
  6. 6.Departamento de Química e Farmácia; Faculdade de Ciências e de TecnologiaUniversidade do AlgarveFaroPortugal

Personalised recommendations