Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Impact of Soil Heterogeneity on Nitrate Dynamic and Losses in Tile-Drained Arable Fields

  • 320 Accesses

  • 1 Citations

Abstract

Intensive agriculture and the related application of fertilizers are one of the main sources for diffuse nitrate (NO3–N) inputs into surface- and groundwater. It is assumed that especially subsurface tile drainage is an essential source. To examine the impact of heterogeneous soil properties on NO3–N leaching via drains, field experiments in the northern Altmark region in Saxony-Anhalt (Germany) were realized on two neighboring, tile-drained arable fields with adjusted agronomic conditions but different soil physical properties from 1 November 2013 until 31 October 2015. Field campaigns, the implemented measuring technology, and numerical simulations provided the detailed characterization of the subsurface, the flow regime, and the NO3–N dynamic. The results revealed that field I was groundwater influenced and dominated by ponding and surface runoff, whereas at field II, the whole amount of seepage water percolated freely to the drains. Thus, the amount of drained water and discharged NO3–N loads differed significantly between both sites although their comparable size (field I/field II, 17.1 mm and 2.5 kg N ha−1/150.2 mm and 40.4 kg N ha−1). Furthermore, NO3–N accumulated in the top soil of field I; whereas, this site showed a huge denitrification potential due to long hydraulic residence times. These aspects could not be reproduced at field II. A site-specific N management is absolutely required to reduce further N losses at field II as a requirement to fulfill the objectives of the European water protection policy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abdirashid, E., Madramootoo, C., Egeh, M., & Hamel, C. (2004). Water and fertilizer nitrogen management to minimize nitrate pollution from a cropped soil in southwestern Quebec, Canada. Water, Air and Soil Pollution, 151, 117–134.

  2. Ackermann, A. (2016). Simulation des Austrags von gelöstem organischen Kohlenstoff aus landwirtschaftlich genutzten Mineralböden, Helmholtz Centre for Environmental Research-UFZ, 144 pp

  3. Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44, 71–91.

  4. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO Irrig. Drain.

  5. Ashok, V., & Hait, S. (2015). Remediation of nitrate-contaminated water by solid-phase denitrification processes—a review. Environmental Science and Pollution Research, 22, 8075–8093.

  6. Bednorz, D., Tauchnitz, N., Bischoff, J., Schrödter, M., Koblenz, B., Rücknagel, J., Rupp, H., Christen, O., & Meissner, R. (2015). Lysimeter- und Feldversuche als Grundlage zur modellgestützten Bewertung der Stickstoffkinetik in der ungesättigten Zone in Abhängigkeit von Bodenphysik und Bewirtschaftung, DBG Unsere Böden–Unser Leben. München: DBG.

  7. Blann, K. L., Anderson, J. L., Sands, J. R., & Vondracek, B. (2009). Effects of agricultural drainage on aquatic ecosystems: a review. Critical Reviews in Environmental Science and Technology, 39, 909–1001.

  8. Burkart, M. R., & Stoner, J. D. (2008). Nitrogen in groundwater associated with agricultural systems. In N. L. Hatfield & R. F. Follett (Eds.), Nitrogen in the environment: sources, problems, and management (pp. 177–202). Amsterdam: Elsevier.

  9. David, M. B., Gentry, L. E., Kovacic, D. A., & Smith, K. M. (1997). Nitrogen balance in and export from an agricultural watershed. Journal of Environmental Quality, 26, 1038–1048.

  10. DIN-EN-1484 (1997). Water analysis - Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Beuth

  11. DIN-EN-ISO-10304-1 (2009). Water quality—determination of dissolved anions by liquid chromatography of ions. Part 1. Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate. Beuth

  12. DIN-EN-ISO-16634-1 (2008). Food products—determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Part 1. Oilseeds and animal feeding stuffs. Beuth

  13. DIN-EN-SO-10523 (2012). Water quality—determination of pH. Beuth.

  14. Dinnes, D.L., Karlen, D.L., Jaynes, D.B., Kaspar, T.C., Hatfield, J.L., Colvin, T.S. & Cambardella, C.A. (2002). Review and interpretation: nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils, USDA-ARS/UNL Faculty

  15. DVWK (1994). Auswertung und Bewertung von Grundwasserproben. DVWK

  16. El-Sadek, A., Joris, I., & Feyen, J. (2002). Water quality modelling of an agricultural field: from soil surface to groundwater, Celtic water in an European framework-pointing the way to quality—International celtic colloquium on hydrology and management of water resources (pp. 197–205). Galway: National University of Ireland.

  17. EU (2000). Richtlinie zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik

  18. EU (2006). Richtlinie zum Schutz des Grundwassers vor Verschmutzung und Verschlechterung

  19. Feddes, R. A., Kowalik, P. J., & Zarandny, H. (1978). Simulation of field water use and crop yield. New York: Wiley.

  20. Filipovic, V., Coquet, Y., Pot, V., Houot, S., & Benoit, P. (2014). Modelling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application. The Science of the Total Environment, 499, 546–559.

  21. Follett, R. F. (2004). Nitrogen transformation and transport processes. In R. F. Follett & J. L. Hatfield (Eds.), Nitrogen in the environment: sources, problems, and management (pp. 17–44). Amsterdam: Elsevier.

  22. Gooday, R., Anthony, S., & Fawcett, L. (2008). A field scale model of soil drainage and nitrate leaching for application in nitrate vulnerable zones. Environmental Modelling and Software, 23, 1045–1055.

  23. Goss, M. J., Howse, K. R., Lange, P. W., Christian, D. G., & Harris, G. L. (1993). Losses of nitrate-nitrogen in water draining from under autumn-sown crops established by direct drilling or mouldboard ploughing. Journal of Soil Science, 44, 35–48.

  24. Harmel, R. D., & Smith, P. K. (2007). Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modelling. Journal of Hydrology, 337, 326–336.

  25. Hatfield, J. L., Jaynes, D. B., Burkart, M. R., Cambardella, C. A., Morman, T. B., Brueger, J. H., & Smith, M. A. (1999). Water quality in Walnut Creek watershed: setting and farming practices. Journal of Environmental Quality, 28, 11–24.

  26. Heumann, S., Ringe, H., & Böttcher, J. (2011a). Field-specific simulations of net N mineralization based on digitally available soil and weather data. I. Pedotransfer functions for the pool sizes. Nutrient Cycling in Agroecosystems, 91, 339–350.

  27. Heumann, S., Ringe, H., & Böttcher, J. (2011b). Field-specific simulations of net N mineralization based on digitally available soil and weather data. I. Temperature and soil water dependency. Nutrient Cycling in Agroecosystems, 91, 219–234.

  28. Jury, W. A., & Nielson, D. R. (1989). Nitrate transport and leaching mechanism. In R. F. Follett (Ed.), Nitrogen management and ground water protection (pp. 139–157). Amsterdam: Elsevier Sci. Pubs.

  29. Kahle, P., & Mehl, D. (2014). Nitratausträge über Dränung landwirtschaftlich genutzter Böden in Mecklenburg-Vorpommern-Fallstudien. Korrespondenz Wasserwirtschaft, 7, 198–205.

  30. Kersebaum, K. C., & Richter, J. (1991). Modelling nitrogen dynamics in a plant-soil system with a simple model for advisory purposes. Fertilizer Research, 27, 273–281.

  31. Kölle, W., Werner, P., Strebel, O., & Böttcher, J. (1983). Denitrifikation in einem reduzierenden Grundwasserleiter. Vom Wasser, 61, 125–146.

  32. Krause, P., Boyle, D. P., & Bäse, E. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97.

  33. Kunkel, R., Hannappel, S., Voigt, H.J. & Wendland, F. (2002). Die natürliche Grundwasserbeschaffenheit ausgewählter hydrostratigraphischer Einheiten Deutschlands. Forschungszentrum Jülich/HYDOR Consult GmbH/Brandenburgisch-Technische Universität Cottbus

  34. LAGB (1999). Bodenatlas Sachsen-Anhalt

  35. LAGB (2003). GK 25-Geologische Karte 1:25000

  36. Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.

  37. Marchetti, R., Donatelli, M., & Spallacci, P. (1997). Testing denitrification functions of dynamic crop models. Journal of Environmental Quality, 26, 394–401.

  38. Meissner, R., Seeger, J., Rupp, H., & Balla, H. (1999). Assessing the impact of agricultural land use changes on water quality. Water Science and Technology, 40(2), 1–10.

  39. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agriculture and Biological Engineers, 50(3), 885–900.

  40. Nakamura, K., Harter, T., Mathews, M.C., Meyer, R.D. & Gandois, D. (2007). Fate of liquid dairy manure nitrogen in an irrigated double crop corn-grain rotation, California. In: Chang, A., T. Harter, J. Letey, D. Meyer, R.D. Meyer, M.C. Mathews, F. Mitloehner, S. Pettygrove, P. Robinson, R. Zhang (Eds.) Groundwater quality protection: managing dairy manure in the Central Valley of California (Appendix H). University of California

  41. Pärn, J., Pinay, G., & Mander, Ü. (2012). Indicators of nutrient transport from agricultural catchments under temperate climate: a review. Ecological Indicators, 22, 4–15.

  42. Pena-Haro, S., Garcia-Prats, A., & Pulido-Velazquez, M. (2014). Influence of soil and climate heterogeneity on the performance of economic instruments for reducing nitrate leaching from agriculture. The Science of the Total Environment, 499, 510–519.

  43. Randall, G. W., & Goss, M. J. (2008). Nitrate losses to surface water through subsurface, tile drainage. In N. L. Hatfield & R. F. Follett (Eds.), Nitrogen in the environment: sources, problems, and management (pp. 145–176). Amsterdam: Elsevier.

  44. Randall, G. W., & Iragavarapu, T. K. (1995). Impact of long-term tillage systems for continuous corn and nitrate leaching to tile drainage. Journal of Environmental Quality, 24, 360–366.

  45. Randall, G. W., Iragavarapu, T. K., & Bock, B. R. (1997). Nitrogen application methods and timing for corn after soybean in a ridge-tillage system. Journal of Production Agriculture, 10, 300–307.

  46. Randall, G. W., & Mulla, D. J. (2001). Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. Journal of Environmental Quality, 30, 337–344.

  47. Refsgaard, J. C., Auken, E., Bamberg, C. A., Christensen, B. S. B., Clausen, T., Dalgaard, E., Efferso, F., Ernstsen, V., Gertz, F., Hansen, A. L., He, X., Jacobsen, B. H., Jensen, K. H., Jorgensen, F., Jorgensen, L. F., Koch, J., Nilsson, B., Petersen, C., Schepper, G., Schamper, C., Sorensen, K. I., Therrien, R., Thirup, C., & Viezzoli, A. (2014). Nitrate reduction in geologically heterogeneous catchments—a framework for assessing the scale of predictive capability of hydrological models. The Science of the Total Environment, 468–469, 1278–1288.

  48. Ritchie, J. T. (1972). Model for predicting evaporation from a row with incomplete cover. Water Resources Research, 8(5), 1204–1213.

  49. Ritter, A., & Munoz-Carpena, R. (2013). Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45.

  50. Robert, P. C. (2002). Precision agriculture: a challenge for crop nutrition management. Plant and Soil, 247, 143–149.

  51. Salem, H. M., Valero, C., Munoz, M. A., Rodriguez, M. G., & Silva, L. L. (2015). Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237–238, 60–70.

  52. Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedo-transfer-functions. Journal of Hydrology, 251, 163–176.

  53. Schepper, G., Therrien, R., Refsgaard, J. C., & Hansen, A. L. (2015). Simulating coupled surface and subsurface water flow in a tile-drained agricultural catchment. Journal of Hydrology, 521, 374–388.

  54. Silva, R. G., Holub, S. M., Jorgensen, E. E., & Ashanuzzaman, A. N. M. (2005). Indicators of nitrate leaching loss under different land use of clayey and sandy soils in southeastern Oklahoma. Agriculture, Ecosystems & Environment, 109, 346–459.

  55. Simunek, J., Van Genuchten, M. T., & Sejna, M. (2008). Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7(2), 587–600.

  56. Simunek, J., van Genuchten, M.T. & Sejnas, M. (2012). The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media

  57. Übelhör, A., Gruber, S., & Claupein, W. (2014). Influence of tillage intensity and nitrogen placement on nitrogen uptake and yield in strip-tilled white cabbage (Brassica oleracea convar. capitata var. alba). Soil & Tillage Research, 144, 156–163.

  58. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

  59. VDLUFA. (2002). Bestimmung von mineralischem Stickstoff (Nitrat und Ammonium) in Bodenprofilen (Nmin-Labormethode). VDLUFA

  60. Vos, J. A. (2001). Monitoring nitrate leaching from submerged drains-short communications. Journal of Environmental Quality, 30, 1092–1096.

  61. Warsta, L., Karvonen, T., Koivusalo, H., Paasonen-Kivekas, M., & Taskinen, A. (2013). Simulation of water balance in a clayey, subsurface drained agricultural field with three-dimensional FLUSH-model. Journal of Hydrology, 476, 395–409.

  62. Weed, D. A. J., & Kanwar, R. S. (1996). Nitrate and water present in and flowing from root-zone soil. Journal of Environmental Quality, 25, 709–719.

Download references

Acknowledgment

This publication is based on a research project, funded by the “Federal Foundation for the Environment” (DBU), funding code-31086-34.

Author information

Correspondence to Denise Bednorz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bednorz, D., Tauchnitz, N., Christen, O. et al. The Impact of Soil Heterogeneity on Nitrate Dynamic and Losses in Tile-Drained Arable Fields. Water Air Soil Pollut 227, 395 (2016). https://doi.org/10.1007/s11270-016-3095-5

Download citation

Keywords

  • Drainage field
  • Water balance
  • Nitrate profile
  • Nitrate leaching
  • 2D-numerical simulations