Water, Air, & Soil Pollution

, 227:390

Waterfowl Impoundments as Sources of Nitrogen Pollution

  • R. Scott Winton
  • Michelle Moorman
  • Curtis J. Richardson
Article

Abstract

Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations. Nutrients exported from heavily used impoundments by prescribed seasonal drawdown of surface water may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of nutrient export from managed impoundment habitats, we conducted a field study at Mattamuskeet National Wildlife Refuge in North Carolina, USA, which contains 1545 ha of impoundments that drain into hypereutrophic Lake Mattamuskeet. We found that prescribed hydrologic drawdowns of an impoundment exported roughly the same amount of nitrogen (N) as adjacent fertilized agricultural fields on a per-area basis and contributed approximately one fifth of total N load to Lake Mattamuskeet. The prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake as an unintended consequence. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly managed moist-soil impoundments on National Wildlife Refuges in the southeastern USA, especially those hosting dense concentrations of waterfowl. We suggest an earlier seasonal drawdown could potentially mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70 %.

Keywords

Wetlands Wildlife management Biogeochemistry Denitrification 

Supplementary material

11270_2016_3082_MOESM1_ESM.docx (555 kb)
ESM 1(DOCX 554 kb)

References

  1. Ardón, M., Morse, J. L., Doyle, M. W., & Bernhardt, E. S. (2010). The water quality consequences of restoring wetland hydrology to a large agricultural watershed in the Southeastern Coastal Plain. Ecosystems, 13(7), 1060–1078. doi:10.1007/s10021-010-9374-x.CrossRefGoogle Scholar
  2. Baldassarre, G. A., Bolen, E. G., & Saunders, A. (2006). Waterfowl ecology and management. Malabar: Krieger.Google Scholar
  3. Bennett, E. M., Reed-Andersen, T., Houser, J. N., Gabriel, J. R., & Carpenter, S. R. (1999). A phosphorus budget for the Lake Mendota watershed. Ecosystems, 2(1), 69–75. doi:10.1007/s100219900059.CrossRefGoogle Scholar
  4. Borum, J. (1985). Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Marine Biology, 87, 211–218.CrossRefGoogle Scholar
  5. Brandvold, D. K., Popp, C. J., & Brierley, J. A. (1976). Waterfowl refuge effect on water quality: II. Chemical and physical parameters. Water Pollution Control Federation, 48(4), 680–687.Google Scholar
  6. Butt, A. J., & Brown, B. L. (2000). The cost of nutrient reduction: a case study of Chesapeake Bay. Coastal Management, 28(2), 175–185. doi:10.1080/089207500263585.CrossRefGoogle Scholar
  7. Cambridge, M. L., & McComb, A. J. (1984). The loss of seagrasses in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development. Aquatic Botany, 20(3-4), 229–243. doi:10.1016/0304-3770(84)90089-5.CrossRefGoogle Scholar
  8. Carpenter, D. E., & Dubbs, L. (2012). Albemarle-Pamlico Ecosystem Assessment 2012. Columbia: Albemarle-Pamlico National Estuary Partnership.Google Scholar
  9. Chaichana, R., Leah, R., & Moss, B. (2010). Birds as eutrophicating agents: a nutrient budget for a small lake in a protected area. Hydrobiologia, 646(1), 111–121. doi:10.1007/s10750-010-0166-2.CrossRefGoogle Scholar
  10. Cooper, J., Gilliam, J., Daniels, R., & Robarge, W. (1987). Riparian areas as filters for agricultural sediment. Soil Science Society of America Journal, 51, 416–420.CrossRefGoogle Scholar
  11. Copeland, B. J., Hodson, R. G., Riggs, S. R., & Easley Jr, J. E. (1983). Ecology of the Albermarle Sound, North Carolina: an estuarine profile. Washington: US Fish and Wildlife Service.Google Scholar
  12. Dahl, T. E. (2011). Status and trends of wetlands in the conterminous United States 2004 to 2009. Washington: Fish and Wildlife Service.Google Scholar
  13. Davis, A. B., Davis, K., & Sheck, A. (2016). Effects of conductivity, nitrogen, and phosphorus on Phytoplankton in Lake Mattamuskeet. In AAAS 2016 Annual Meeting. Washington, 11–15 February 2016.Google Scholar
  14. Deal, S. C., Gilliam, J. W., Skaggs, R. W., & Konyha, K. D. (1986). Prediction of nitrogen and phosphorus losses as related to agricultural drainage system design. Agriculture, Ecosystems & Environment, 18(1), 37–51. doi:10.1016/0167-8809(86)90173-8.CrossRefGoogle Scholar
  15. Downing, J. A., & Mccauley, E. (1992). The nitrogen: phosphorus relationship in lakes. Limnology and Oceanography, 37(5), 936–945. doi:10.4319/lo.1992.37.5.0936.CrossRefGoogle Scholar
  16. Drilling, N., Titman, R., & McKinney, F. (2002). Mallard (Anas platyrhynchos). In A. Poole (Ed.), The birds of North America online. Ithaca: Cornell Laboratory of Ornithology.Google Scholar
  17. Firestone, M. K. (1982). Biological denitrification. In F. J. Stevenson (Ed.), Nitrogen in agricultural soils (pp. 289–326). Madison: American Society of Agronomy, Inc.Google Scholar
  18. Forrest, L. C. (1999). Lake Mattamuskeet. New Holland and Hyde County: Arcadia Publishing.Google Scholar
  19. Fry, J. A., Xian, G., Jin, S., Dewitz, J. A., Homer, C. G., Limin, Y., et al. (2011). Completion of the 2006 national land cover database for the conterminous United States. Photogrammetric Engineering and Remote Sensing, 77(9), 858–864.Google Scholar
  20. Gilliam, J., Skaggs, R., & Weed, S. (1979). Drainage control to diminish nitrate loss from agricultural fields. Journal of Environmental Quality, 8(3), 137–142.CrossRefGoogle Scholar
  21. Gilliam, J. W., Skaggs, R. W., & Weed, S. (1978). An evaluation of the potential for using drainage control to reduce nitrate loss from agricultural fields to surface waters. Raleigh: School of Agriculture and Life Sciences, North Carolina State University.Google Scholar
  22. Gould, D., & Fletcher, M. (1978). Gull droppings and their effects on water quality. Water Research, 12, 665–672.CrossRefGoogle Scholar
  23. Hahn, S., Bauer, S., & Klaassen, M. (2007). Quantification of allochthonous nutrient input into freshwater bodies by herbivorous waterbirds. Freshwater Biology, 53, 181–193. doi:10.1111/j.1365-2427.2007.01881.x.Google Scholar
  24. Healey, F., & Hendzel, L. (1980). Physiological indicators of nutrient deficiency in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences, 37, 442–453.CrossRefGoogle Scholar
  25. Hearns, W. E. (1910). Soil Survey of the Lake Mattamuskeet Area, North Carolina. Washington: US Department of Agriculture.Google Scholar
  26. Heck, K., Able, K., Roman, C., & Fahay, M. (1995). Composition, abundance, biomass, and production of macrofauna in a New England estuary: comparisons among eelgrass meadows and other nursery habitats. Estuaries, 18(2), 379–389.CrossRefGoogle Scholar
  27. Hecky, R., & Guildford, S. (1984). Primary productivity of Southern Indian Lake before, during, and after impoundment and Churchill River diversion. Canadian Journal of Fisheries and Aquatic Sciences, 41, 591–604.CrossRefGoogle Scholar
  28. International Rice Research Institute. (1985). Wetland soils: characterization, classification, and utilization. Los Baños: International Rice Research Institute.Google Scholar
  29. Johnson, F. A., & Montalbano, F., III. (1989). Southern reservoirs and lakes. In L. M. Smith, R. L. Pederson, & R. M. Kaminski (Eds.), Habitat management for migrating and wintering waterfowl in North America (pp. 93–116). Lubbock: Texas Tech University Press.Google Scholar
  30. Kadlec, J. (1962). Effects of a drawdown on a waterfowl impoundment. Ecology, 43(2), 267–281.CrossRefGoogle Scholar
  31. Kemp, W., Batiuk, R., Bartleson, R., Bergstrom, P., Carter, V., Gallegos, C. L., et al. (2004). Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical-chemical factors. Estuaries, 27(3), 363–377.CrossRefGoogle Scholar
  32. Kemp, W., Twilley, R., Stevenson, J. C., Boynton, W. R., & Means, J. C. (1983). The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Marine Technology Society Journal, 17(2), 78–89.Google Scholar
  33. Kolzau, S., Wiedner, C., Rücker, J., Köhler, J., Köhler, A., & Dolman, A. M. (2014). Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from ambient nutrient concentrations. PloS One, 9(4), e96065. doi:10.1371/journal.pone.0096065.CrossRefGoogle Scholar
  34. Limpert, R. J., & Earnst, S. L. (1994). Tundra Swan (Cygnus columbianus). In A. Poole (Ed.), The birds of North America online. Ithaca: Cornell Laboratory of Ornithology. doi:10.2173/bna.89.Google Scholar
  35. Lubbers, L., Boynton, W., & Kemp, W. (1990). Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants. Marine Ecology Progress Series, 65, 1–14.CrossRefGoogle Scholar
  36. Manny, B., Johnson, W., & Wetzel, R. (1994). Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality. Hydrobiologia, 279(280), 121–132.CrossRefGoogle Scholar
  37. McGlathery, K. (1995). Nutrient and grazing influences on a subtropical seagrass community. Marine Ecology Progress Series, 122, 239–252.CrossRefGoogle Scholar
  38. Mowbray, T. B., Cooke, F., & Ganter, B. (2000). In A. Poole (Ed.), Snow goose (Chen caerulescens). The birds of North America online. Ithaca: Cornell Lab of Ornithology. doi:10.2173/bna.514.Google Scholar
  39. Mowbray, T. B., Ely, C. R., Sedinger, J. S., & Trost, R. E. (2002). Canada goose (Branta canadensis). In A. Poole (Ed.), The birds of North America online. Ithaca: Cornell Laboratory of Ornithology. doi:10.2173/bna.682.Google Scholar
  40. Nagy, K. A., Girard, I. A., & Brown, T. K. (1999). Energetics of free-ranging mammals, reptiles, and birds. Annual Review of Nutrition, 19, 247–277. doi:10.1146/annurev.nutr.19.1.247.CrossRefGoogle Scholar
  41. North American Waterfowl Management Plan Committee. (2012). North American waterfowl management plan 2012: people conserving waterfowl and wetlands. Washington: Fish and Wildlife Service.Google Scholar
  42. North Carolina Department of Health Environment and Natural Resources. (2013). Lake & Reservoir Assessments Tar-Pamlico River Basin. Raleigh: North Carolina Division of Water Quality.Google Scholar
  43. Olson, M. H., Hage, M. M., Binkley, M. D., & Binder, J. R. (2005). Impact of migratory snow geese on nitrogen and phosphorus dynamics in a freshwater reservoir. Freshwater Biology, 50(5), 882–890. doi:10.1111/j.1365-2427.2005.01367.x.CrossRefGoogle Scholar
  44. Orth, R. J., & Moore, K. A. (1983). Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science, 222, 51–53. doi:10.1126/science.222.4619.51.CrossRefGoogle Scholar
  45. Post, D. M., Taylor, J. P., Kitchell, J. F., Olson, M. H., Schindler, D. E., & Herwig, B. R. (1998). The role of migratory waterfowl as nutrient vectors in a managed wetland. Conservation Biology, 12(4), 910–920. doi:10.1046/j.1523-1739.1998.97112.x.CrossRefGoogle Scholar
  46. Qin, B., Xu, P., Wu, Q., Luo, L., & Zhang, Y. (2007). Environmental issues of Lake Taihu, China. Hydrobiologia, 581(1), 3–14. doi:10.1007/s10750-006-0521-5.CrossRefGoogle Scholar
  47. Rabotyagov, S., Campbell, T., Jha, M., Gassman, P., Arnold, J., Kurkalova, L., et al. (2010). Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone. Ecological Applications, 20(6), 1542–1555.CrossRefGoogle Scholar
  48. Richardson, C. (1983). Pocosins: vanishing wastelands or valuable wetlands? Bioscience, 33(10), 626–633.CrossRefGoogle Scholar
  49. Richardson, C. J., Walbridge, M. R., & Burns, A. (1988). Soil chemistry and phosphorus retention capacity of North Carolina coastal plain swamps receiving sewage effluent. Raleigh: North Carolina Water Resources Research Institute of the University of North Carolina.Google Scholar
  50. Schwede, D. B., & Lear, G. G. (2014). A novel hybrid approach for estimating total deposition in the United States. Atmospheric Environment, 92, 207–220.CrossRefGoogle Scholar
  51. Short, F. T., & Wyllie-Echeverria, S. (1996). Natural and human-induced disturbance of seagrasses. Environmental Conservation, 23(1), 17–27. doi:10.1017/S0376892900038212.CrossRefGoogle Scholar
  52. Skaggs, R. W., Gilliam, J. W., Sheets, T. J., & Barnes, J. S. (1980). Effect of agricultural land development on drainage waters in the North Carolina Tidewater region. Raleigh: North Carolina Water Resources Research Institute of the University of North Carolina.Google Scholar
  53. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139. doi:10.1065/espr2002.12.142.CrossRefGoogle Scholar
  54. Soil Survey Staff. (2015). Web soil survey. Natural Resources Conservation Service, United States Department of Agriculture. http://websoilsurvey.nrcs.usda.gov/
  55. Strader, R., Stinson, P., & Jackson, M. (2005). Moist-soil management guidelines for the US Fish and Wildlife Service Southeast Region. Migratory Bird Field Office, Division …. Jackson: US Fish and Wildlife Service.Google Scholar
  56. Tomasko, D. a., Dawes, C. J., & Hall, M. O. (1996). The effects of anthropogenic nutrient enrichment on turtle grass (Thalassia testudinum) in Sarasota Bay, Florida. Estuaries, 19(2B), 448–456. doi:10.2307/1352462.CrossRefGoogle Scholar
  57. U.S. Fish and Wildlife Service. (2015). Science to support hydrology and water quality management decision-making at Lake Mattamuskeet.Google Scholar
  58. Walker, D., & McComb, A. (1992). Seagrass degradation in Australian coastal waters. Marine Pollution Bulletin, 25(5-8), 191–195. doi:10.1016/0025-326X(92)90224-T.CrossRefGoogle Scholar
  59. Ward, S. (2009). Preliminary results of an ongoing investigation of ammonia emissions from a large-scale egg-laying operation near Pocosin Lakes National Wildlife Refuge. Raleigh: US Fish and Wildlife Service.Google Scholar
  60. Waters, M. N., Piehler, M. F., Rodriguez, A. B., Smoak, J. M., & Bianchi, T. S. (2009). Shallow lake trophic status linked to late Holocene climate and human impacts. Journal of Paleolimnology, 42(1), 51–64. doi:10.1007/s10933-008-9247-x.CrossRefGoogle Scholar
  61. Waters, M. N., Piehler, M. F., Smoak, J. M., & Martens, C. S. (2010). The development and persistence of alternative ecosystem states in a large, shallow lake. Freshwater Biology, 55(6), 1249–1261. doi:10.1111/j.1365-2427.2009.02349.x.CrossRefGoogle Scholar
  62. Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses (3rd ed.). New York: Springer.CrossRefGoogle Scholar
  63. Winton, R. S., & Richardson, C. J. (2015). A cost-effective method for reducing soil disturbance-induced errors in static chamber measurement of wetland methane emissions. Wetlands Ecology and Management. doi:10.1007/s11273-015-9468-5

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • R. Scott Winton
    • 1
  • Michelle Moorman
    • 2
  • Curtis J. Richardson
    • 1
  1. 1.Duke University Wetland Center, Nicholas School of the EnvironmentDurhamUSA
  2. 2.U.S. Fish and Wildlife Service, Mattamuskeet National Wildlife Refuge OfficeFairfieldUSA

Personalised recommendations